Global distribution of soil fauna functional groups and their estimated litter consumption across biomes
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
36253487
PubMed Central
PMC9576680
DOI
10.1038/s41598-022-21563-z
PII: 10.1038/s41598-022-21563-z
Knihovny.cz E-zdroje
- MeSH
- biomasa MeSH
- ekosystém * MeSH
- lesy MeSH
- půda * MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- půda * MeSH
- voda MeSH
Soil invertebrates (i.e., soil fauna) are important drivers of many key processes in soils including soil aggregate formation, water retention, and soil organic matter transformation. Many soil fauna groups directly or indirectly participate in litter consumption. However, the quantity of litter consumed by major faunal groups across biomes remains unknown. To estimate this quantity, we reviewed > 1000 observations from 70 studies that determined the biomass of soil fauna across various biomes and 200 observations from 44 studies on litter consumption by soil fauna. To compare litter consumption with annual litterfall, we analyzed 692 observations from 24 litterfall studies and 183 observations from 28 litter stock studies. The biomass of faunal groups was highest in temperate grasslands and then decreased in the following order: boreal forest > temperate forest > tropical grassland > tundra > tropical forest > Mediterranean ecosystems > desert and semidesert. Tropical grasslands, desert biomes, and Mediterranean ecosystems were dominated by termites. Temperate grasslands were dominated by omnivores, while temperate forests were dominated by earthworms. On average, estimated litter consumption (relative to total litter input) ranged from a low of 14.9% in deserts to a high of 100.4% in temperate grassland. Litter consumption by soil fauna was greater in grasslands than in forests. This is the first study to estimate the effect of different soil fauna groups on litter consumption and related processes at global scale.
CREAF Universitat Autònoma Barcelona E08193 08193 Cerdanyola del Vallès Spain
IEES Paris UPMC 4 place Jussieu 75252 Paris Cedex 05 France
Pyrenean Institute of Ecology IPE CSIC Avda Ntra Sra de la Victoria 16 Jaca 22700 Huesca Spain
Swiss Federal Research Institute WSL Zürcherstrasse 111 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. doi: 10.1038/nature13855. PubMed DOI
Fierer N. Embracing the unknown: Disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 2017 doi: 10.1038/nrmicro.2017.87. PubMed DOI
Frouz J. Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma. 2018;332:161–172. doi: 10.1016/j.geoderma.2017.08.039. DOI
Hicks Pries CE, Castanha C, Porras R, Phillips C, Torn MS. Response to comment on “The whole-soil carbon flux in response to warming”. Science. 2018;359:1420–1423. doi: 10.1126/science.aao0457. PubMed DOI
Lavelle P, et al. Soil function in a changing world: The role of invertebrate ecosystem engineers. Eur. J. Soil Biol. 1997;33:159–193.
Frouz J, Špaldoňová A, Fričová K, Bartuška M. The effect of earthworms (Lumbricus rubellus) and simulated tillage on soil organic carbon in a long-term microcosm experiment. Soil. Biol. Biochem. 2014;78:58–64. doi: 10.1016/j.soilbio.2014.07.011. DOI
Lavelle P, Blanchart E, Martin A, Martin S, Schaefer R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Assoc. Trop. Biol. 2016;25:130–150.
Lavelle P, et al. Earthworms as a resource in tropical agroecosystems. Nat. Res. 1998;34:26–41.
Lavelle P. Diversity of soil fauna and ecosystem function. Biol. Int. J. 1996;33:3–16.
Ruiz, N., Lavelle, P. & Jiménez, J. Soil macrofauna field manual. Recherche 113 (2008).
Xiong W, et al. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 2018;12:634–638. doi: 10.1038/ismej.2017.171. PubMed DOI PMC
Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol. Lett. 2009;12:1238–1249. doi: 10.1111/j.1461-0248.2009.01360.x. PubMed DOI
Nielsen UN, et al. Global-scale patterns of assemblage structure of soil nematodes in relation to climate and ecosystem properties. Glob. Ecol. Biogeogr. 2014;23:968–978. doi: 10.1111/geb.12177. DOI
Špaldoňová A, Frouz J. The role of Armadillidium vulgare (Isopoda: Oniscidea) in litter decomposition and soil organic matter stabilization. Appl. Soil. Ecol. 2014 doi: 10.1016/j.apsoil.2014.04.012. DOI
McCay TS, Cardelus CL, Neatrour MA. Rate of litter decay and litter macroinvertebrates in limed and unlimed forests of the Adirondack Mountains, USA. For. Ecol. Manag. 2013;304:254–260. doi: 10.1016/j.foreco.2013.05.010. DOI
Slade EM, Riutta T. Interacting effects of leaf litter species and macrofauna on decomposition in different litter environments. Basic Appl. Ecol. 2012;13:423–431. doi: 10.1016/j.baae.2012.06.008. DOI
Joly F-X, Coq S, Coulis M, Nahmani J, Hättenschwiler S. Litter conversion into detritivore faeces reshuffles the quality control over C and N dynamics during decomposition. Funct. Ecol. 2018 doi: 10.1111/1365-2435.13178. DOI
Hättenschwiler S. Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types Isopod effects on decomposition of litter produced under elevated CO2, N deposition and different soil types. Glob. Change Biol. 2015 doi: 10.1046/j.1365-2486.2001.00402.x. DOI
Wall DH, et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 2008;14:2661–2677. doi: 10.1111/j.1365-2486.2008.01672.x. DOI
Brussaard L, Pulleman MM, Ouédraogo É, Mando A, Six J. Soil fauna and soil function in the fabric of the food web. Pedobiologia (Jena) 2007;50:447–462. doi: 10.1016/j.pedobi.2006.10.007. DOI
Frouz J, Elhottová D, Kuráž V, Šourková M. Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Appl. Soil Ecol. 2006;33:308–320. doi: 10.1016/j.apsoil.2005.11.001. DOI
García-Palacios P, Maestre FT, Kattge J, Wall DH. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 2013;16:1045–1053. doi: 10.1111/ele.12137. PubMed DOI PMC
Melguizo-Ruiz N, et al. Field exclusion of large soil predators impacts lower trophic levels and decreases leaf-litter decomposition in dry forests. J. Anim. Ecol. 2020;89:334–346. doi: 10.1111/1365-2656.13101. PubMed DOI
Lavelle P, et al. Soil macroinvertebrate communities: A world-wide assessment. Glob. Ecol. Biogeogr. 2022 doi: 10.1111/geb.13492. DOI
Coq S, et al. Faeces traits as unifying predictors of detritivore effects on organic matter turnover. Geoderma. 2022;422:115940. doi: 10.1016/j.geoderma.2022.115940. DOI
Lavelle P, et al. Soil aggregation, ecosystem engineers and the C cycle. Act Oecol. 2020;105:103561. doi: 10.1016/j.actao.2020.103561. DOI
Filser J, et al. Soil fauna: Key to new carbon models. Soil. 2016;2:565–582. doi: 10.5194/soil-2-565-2016. DOI
Wardle DA, et al. Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–1633. doi: 10.1126/science.1094875. PubMed DOI
Joly FX, et al. Detritivore conversion of litter into faeces accelerates organic matter turnover. Commun. Biol. 2020;3:1–9. doi: 10.1038/s42003-020-01392-4. PubMed DOI PMC
Frouz J, Roubíčková A, Heděnec P, Tajovský K. Do soil fauna really hasten litter decomposition? A meta-analysis of enclosure studies. Eur. J. Soil Biol. 2015;68:18. doi: 10.1016/j.ejsobi.2015.03.002. DOI
Lavelle P, Blanchart E, Martin A, Martin S, Spain A. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica. 1993;25:130–150. doi: 10.2307/2389178. DOI
Crowther TW, A’Bear AD. Impacts of grazing soil fauna on decomposer fungi are species-specific and density-dependent. Fungal Ecol. 2012;5:277–281. doi: 10.1016/j.funeco.2011.07.006. DOI
Decaëns T. Macroecological patterns in soil communities. Glob. Ecol. Biogeogr. 2010;19:287–302. doi: 10.1111/j.1466-8238.2009.00517.x. PubMed DOI PMC
Tordoff GM, Boddy L, Jones TH. Species-specific impacts of collembola grazing on fungal foraging ecology. Soil. Biol. Biochem. 2008;40:434–442. doi: 10.1016/j.soilbio.2007.09.006. DOI
Meysman FJR, Middelburg JJ, Heip CHR. Bioturbation: A fresh look at Darwin’s last idea. Trends Ecol. Evol. 2006;21:688–695. doi: 10.1016/j.tree.2006.08.002. PubMed DOI
Frouz J, et al. Soil food web changes during spontaneous succession at post mining sites: A possible ecosystem engineering effect on food web organization? PLoS ONE. 2013;8:e79694. doi: 10.1371/journal.pone.0079694. PubMed DOI PMC
Frouz J, Moradi J, Püschel D, Rydlová J. Earthworms affect growth and competition between ectomycorrhizal and arbuscular mycorrhizal plants. Ecosphere. 2019;10:e02736. doi: 10.1002/ecs2.2736. DOI
Marichal R, et al. Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Appl. Soil. Ecol. 2014;83:177–185. doi: 10.1016/j.apsoil.2014.05.006. DOI
Prescott CE, Vesterdal L. Forest ecology and management decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manag. 2021;498:119522. doi: 10.1016/j.foreco.2021.119522. DOI
Kampichler C, Bruckner A. The role of microarthropods in terrestrial decomposition: A meta-analysis of 40 years of litterbag studies. Biol. Rev. Camb. Philos. Soc. 2009;84:375–389. doi: 10.1111/j.1469-185X.2009.00078.x. PubMed DOI
Brennan KEC, Christie FJ, York A. Global climate change and litter decomposition: More frequent fire slows decomposition and increases the functional importance of invertebrates. Glob. Change. Biol. 2009;15:2958–2971. doi: 10.1111/j.1365-2486.2009.02011.x. DOI
Birkhofer K, et al. General relationships between abiotic soil properties and soil biota across spatial scales and different land-use types. PLoS ONE. 2012;7:e43292. doi: 10.1371/journal.pone.0043292. PubMed DOI PMC
Wu T, Ayres E, Bardgett RD, Wall DH, Garey JR. Molecular study of worldwide distribution and diversity of soil animals. PNAS. 2011;108:17720–17725. doi: 10.1073/pnas.1103824108. PubMed DOI PMC
James SW, et al. Comment on Global distribution of earthworm diversity. Science. 2021;371:4629. doi: 10.1126/science.abe4629. PubMed DOI
Cesarz S, et al. Tree species diversity versus tree species identity: Driving forces in structuring forest food webs as indicated by soil nematodes. Soil. Biol. Biochem. 2013;62:36–45. doi: 10.1016/j.soilbio.2013.02.020. DOI
Eppinga MB, Kaproth MA, Collins AR, Molofsky J. Litter feedbacks, evolutionary change and exotic plant invasion. J. Ecol. 2011;99:503–514.
Harrison KA, Bol R, Bardgett RD. Do plant species with different growth strategies vary in their ability to compete with soil microbes for chemical forms of nitrogen? Soil. Biol. Biochem. 2008;40:228–237. doi: 10.1016/j.soilbio.2007.08.004. DOI
Wardle DA, Yeates GW, Barker GM, Bonner KI. The influence of plant litter diversity on decomposer abundance and diversity. Soil Biol. Biochem. 2006;38:1052–1062. doi: 10.1016/j.soilbio.2005.09.003. DOI
Zhang D, Hui D, Luo Y, Zhou G. Rates of litter decomposition in terrestrial ecosystems: Global patterns and controlling factors. J. Plant Ecol. 2008;1:85–93. doi: 10.1093/jpe/rtn002. DOI
Preston CM, Trofymow JA. Variability in litter quality and its relationship to litter decay in Canadian forests. Botany. 2000;78:1269–1287. doi: 10.1139/cjb-78-10-1269. DOI
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. PNAS. 2018;115:6506–6511. doi: 10.1073/pnas.1711842115. PubMed DOI PMC
Phillips HRP, et al. Global distribution of earthworm diversity. Science. 2019;366:480–485. doi: 10.1126/science.aax4851. PubMed DOI PMC
Andersen DC. Below-ground herbivory in natural communities: A review emphasizing fossorial animals. Q. Rev. Biol. 1987;62:261–286. doi: 10.1086/415512. DOI
Cepáková S, Frouz J. Changes in chemical composition of litter during decomposition: A review of published 13C NMR spectra. Plant Nutr. Soil Sci. 2015;15:805–815.
Pietsch KA, et al. Global relationship of wood and leaf litter decomposability: The role of functional traits within and across plant organs. Glob. Ecol. Biogeogr. 2014;23:1046–1057. doi: 10.1111/geb.12172. DOI
Cornwell WK, et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 2008;11:1065–1071. doi: 10.1111/j.1461-0248.2008.01219.x. PubMed DOI
Ponge J-F. Plant–soil feedbacks mediated by humus forms: A review. Soil. Biol. Biochem. 2013;57:1048–1060. doi: 10.1016/j.soilbio.2012.07.019. DOI
Salmon S, Mantel J, Frizzera L, Zanella A. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate. For. Ecol. Manag. 2006;237:47–56. doi: 10.1016/j.foreco.2006.09.089. DOI
Desie E, et al. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol. 2020;34:2598–2610. doi: 10.1111/1365-2435.13668. DOI
Samson FB, Knopf FL, editors. Organisms as Ecosystem Engineers BT—Ecosystem Management: Selected Readings. Springer; 1996. pp. 130–147.
Araujo PI, Yahdjian L, Austin AT. Do soil organisms affect aboveground litter decomposition in the semiarid Patagonian steppe, Argentina? Oecologia. 2012;168:221–230. doi: 10.1007/s00442-011-2063-4. PubMed DOI
Frouz J, et al. Soil biota in post-mining sites along a climatic gradient in the USA: Simple communities in shortgrass prairie recover faster than complex communities in tallgrass prairie and forest. Soil. Biol. Biochem. 2013;67:212–225. doi: 10.1016/j.soilbio.2013.08.025. DOI
Hattenschwiler S, Tiunov AV, Scheu S. Biodiversity and litter decomposition interrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 2005;36:191–218. doi: 10.1146/annurev.ecolsys.36.112904.151932. DOI
Deckmyn G, et al. KEYLINK: Towards a more integrative soil representation for inclusion in ecosystem scale models I. Review and model concept. PeerJ. 2020;8:1–69. doi: 10.7717/peerj.9750. PubMed DOI PMC
Héry M, et al. Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. SME J. 2008;2:92–104. PubMed
Roubickova A, Mudrak O, Frouz J. Effect of earthworm on growth of late succession plant species in postmining sites under laboratory and field conditions. Biol. Fert. Soils. 2009;45:769–774. doi: 10.1007/s00374-009-0386-7. DOI
Bodine MC, Ueckert DN. Effect litter in west of desert termites on herbage and in a shortgrass Texas. J. Range. Manag. 1975;28:353–358. doi: 10.2307/3897490. DOI
Cebrian J. Patterns in the fate of production in plant communities. Am. Nat. 1999;154:449–468. doi: 10.1086/303244. PubMed DOI
Petersen H, Luxton M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos. 1982;39:288. doi: 10.2307/3544689. DOI
Gongalsky KB, Persson T, Pokarzhevskii AD. Effects of soil temperature and moisture on the feeding activity of soil animals as determined by the bait-lamina test. Appl. Soil Ecol. 2008;39:84–90. doi: 10.1016/j.apsoil.2007.11.007. DOI
Simpson JE, Slade E, Riutta T, Taylor ME. Factors affecting soil fauna feeding activity in a fragmented lowland temperate deciduous woodland. PLoS ONE. 2012;7:0029616. doi: 10.1371/journal.pone.0029616. PubMed DOI PMC
Clarke A. Is there a universal temperature dependence of metabolism? Funct. Ecol. 2004;18:252–256. doi: 10.1111/j.0269-8463.2004.00842.x. DOI
Coq S, Ibanez S. Soil fauna contribution to winter decomposition in subalpine grasslands. Soil Org. 2019 doi: 10.25674/so91iss3pp107. DOI
Frouz J, Špaldoňová A, Lhotáková Z, Cajthaml T. Major mechanisms contributing to the macrofauna-mediated slow down of litter decomposition. Soil. Biol. Biochem. 2015;91:23–31. doi: 10.1016/j.soilbio.2015.08.024. DOI
Frouz, J., Šustr, V. & Kalčík, J. Energetic budget of three species of bibionid larvae. In Contributions to Soil Zoology in Central Europe I. ISB AS CR, České Budějovice, 15–18 (2005).
Frouz J, Jedlička P, Šimáčková H, Lhotáková Z. The life cycle, population dynamics, and contribution to litter decomposition of Penthetria holosericea (Diptera: Bibionidae) in an alder forest. Eur. J. Soil Biol. 2015;71:21–27. doi: 10.1016/j.ejsobi.2015.10.002. DOI
Brovkin V, et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences. 2012;9:565–576. doi: 10.5194/bg-9-565-2012. DOI
Buis GM, et al. Controls of aboveground net primary production in mesic savanna grasslands: An inter-hemispheric comparison. Ecosystems. 2009;12:982–995. doi: 10.1007/s10021-009-9273-1. DOI
O’Neill DW, Abson DJ. To settle or protect? A global analysis of net primary production in parks and urban areas. Ecol. Econ. 2009;69:319–327. doi: 10.1016/j.ecolecon.2009.08.028. DOI
Pan S, et al. Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century. J. Geogr. Sci. 2015;25:1027–1044. doi: 10.1007/s11442-015-1217-4. DOI
Yanai RD, et al. Litterfall and litter chemistry change over time in an old-growth temperate forest, northeastern China. For. Ecol. Manag. 1999;43:279–287.
Shchelchkova M, Davydov S, Fyodorov-Davydov D, Davydova A, Boeskorov G. The characteristics of a relic steppe of Northeast Asia: Refuges of the Pleistocene Mammoth steppe (an example from the Lower Kolyma area) IOP Conf. Ser. Earth Environ. Sci. 2020;438:012025. doi: 10.1088/1755-1315/438/1/012025. DOI
Ayuke FO, et al. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 2011;48:53–62. doi: 10.1016/j.apsoil.2011.02.001. DOI
Blanchart E, et al. Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agric. Conspec. Sci. 2007;72:81–87.
Korboulewsky N, Perez G, Chauvat M. How tree diversity affects soil fauna diversity: A review. Soil Biol. Biochem. 2016;94:94–106. doi: 10.1016/j.soilbio.2015.11.024. DOI
Frouz J, Pizl V, Cienciala E, Kalcik J. Carbon storage in post-mining forest soil, the role of tree biomass and soil bioturbation. Biogeochemistry. 2009;94:111–121. doi: 10.1007/s10533-009-9313-0. DOI
Milton Y, Kaspari M. Bottom-up and top-down regulation of decomposition in a tropical forest. Oecologia. 2007;153:163–172. doi: 10.1007/s00442-007-0710-6. PubMed DOI
Öpik M, Moora M, Liira J, Zobel M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 2006;94:778–790. doi: 10.1111/j.1365-2745.2006.01136.x. DOI
Portela MB, et al. Do ecological corridors increase the abundance of soil fauna? Écoscience. 2020;27:45–57. doi: 10.1080/11956860.2019.1690933. DOI
Prieto I, Almagro M, Bastida F, Querejeta JI. Altered leaf litter quality exacerbates the negative impact of climate change on decomposition. J. Ecol. 2019;107:2364–2382. doi: 10.1111/1365-2745.13168. DOI
Van der Putten WH, et al. Plant-soil feedbacks: The past, the present and future challenges. J. Ecol. 2013;101:265–276. doi: 10.1111/1365-2745.12054. DOI
Artz R, et al. European atlas of soil. Biodiversity. 2010 doi: 10.13140/RG.2.1.3178.2880. DOI
Orgiazzi A, et al. Global Soil Biodiversity Atlas. European Soil Data Centre; 2016.
Peng Y, et al. Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma. 2022;407:115570. doi: 10.1016/j.geoderma.2021.115570. DOI
Bardgett RD. The Biology of Soil: A Community and Ecosystem Approach. Oxford University Press; 2005. p. 255.
Jackson RB, et al. A global analysis of root distributions for terrestrial biomes. Oecologia. 1996;108:389–411. doi: 10.1007/BF00333714. PubMed DOI
Jackson RB, Mooney HA, Schulze E-D. A global budget for fine root biomass, surface area, and nutrient contents. PNAS. 1997;94:7362–7366. doi: 10.1073/pnas.94.14.7362. PubMed DOI PMC
Sanchez, G. PLS Path Modeling with R, 235 (2013).
Holland, E. A. et al. A global database of litterfall mass and litter pool carbon and nutrients. 10.3334/ORNLDAAC/1244 (2014).
Palpurina S, et al. The type of nutrient limitation affects the plant species richness–productivity relationship: Evidence from dry grasslands across Eurasia. J. Ecol. 2019;107:1038–1050. doi: 10.1111/1365-2745.13084. DOI
Green C, Byrne KA. Biomass: Impact on carbon cycle and greenhouse gas emissions. In: Cleveland CJ, editor. Encyclopedia of Energy. Elsevier; 2004. pp. 223–236.
Liang W, et al. Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agric. For. Meteorol. 2015;204:22–36. doi: 10.1016/j.agrformet.2015.01.015. DOI
Ise T, Litton CM, Giardina CP, Ito A. Comparison of modeling approaches for carbon partitioning: Impact on estimates of global net primary production and equilibrium biomass of woody vegetation from MODIS GPP. J. Geo. Res. Biogeosci. 2010;115:1–11.
Ni J. Net primary production, carbon storage and climate change in Chinese biomes. Nord. J. Bot. 2000;20:415–426. doi: 10.1111/j.1756-1051.2000.tb01582.x. DOI
Jandl R, et al. How strongly can forest management influence soil carbon sequestration? Geoderma. 2007;137:253–268. doi: 10.1016/j.geoderma.2006.09.003. DOI
Reeves MC, Moreno AL, Bagne KE, Running SW. Estimating climate change effects on net primary production of rangelands in the United States. Clim. Change. 2014;126:429–442. doi: 10.1007/s10584-014-1235-8. DOI
Cappai C, et al. Small-scale spatial variation of soil organic matter pools generated by cork oak trees in Mediterranean agro-silvo-pastoral systems. Geoderma. 2017;304:59–67. doi: 10.1016/j.geoderma.2016.07.021. DOI
Clark DA, et al. Net primary production in tropical forests: An evaluation and synthesis of existing field data. Ecol. Appl. 2001;11:371–384. doi: 10.1890/1051-0761(2001)011[0371:NPPITF]2.0.CO;2. DOI
Yanai RD, Arthur MA, Acker M, Levine CR, Park BB. Variation in mass and nutrient concentration of leaf litter across years and sites in a northern hardwood forest. Can. J. For. Res. 2012;42:1597–1610. doi: 10.1139/x2012-084. DOI