Using normative models pre-trained on cross-sectional data to evaluate intra-individual longitudinal changes in neuroimaging data
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
'BRAINCHART': 215698/Z/19/Z
Wellcome Trust - United Kingdom
CZ.02.2.69/0.0/0.0/18_053/0017594
Ministry of Education, Youth and Sports
'BRADY' CZ.02.01.01/00/22_008/0004643
Programme Johannes Amos Comenius
SGS22/062/OHK3/1 T/13
Czech Technical University Internal Grant Agency
Wellcome Trust - United Kingdom
NU21-08-00432
Czech Health Research Council
'PRECOGNITION': 226706/Z/22/Z
Wellcome Trust - United Kingdom
'MENTALPRECISION': 10100118
European Research Council - International
PubMed
40072912
PubMed Central
PMC11903031
DOI
10.7554/elife.95823
PII: 95823
Knihovny.cz E-zdroje
- Klíčová slova
- MRI, human, neuroimaging, neuroscience, normative modelling, psychosis, schizophrenia,
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- longitudinální studie MeSH
- magnetická rezonanční tomografie MeSH
- mozek * diagnostické zobrazování MeSH
- neurozobrazování * metody MeSH
- průřezové studie MeSH
- schizofrenie * diagnostické zobrazování patologie MeSH
- šedá hmota diagnostické zobrazování patologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Longitudinal neuroimaging studies offer valuable insight into brain development, ageing, and disease progression over time. However, prevailing analytical approaches rooted in our understanding of population variation are primarily tailored for cross-sectional studies. To fully leverage the potential of longitudinal neuroimaging, we need methodologies that account for the complex interplay between population variation and individual dynamics. We extend the normative modelling framework, which evaluates an individual's position relative to population standards, to assess an individual's longitudinal change compared to the population's standard dynamics. Using normative models pre-trained on over 58,000 individuals, we introduce a quantitative metric termed 'z-diff' score, which quantifies a temporal change in individuals compared to a population standard. This approach offers advantages in flexibility in dataset size and ease of implementation. We applied this framework to a longitudinal dataset of 98 patients with early-stage schizophrenia who underwent MRI examinations shortly after diagnosis and 1 year later. Compared to cross-sectional analyses, showing global thinning of grey matter at the first visit, our method revealed a significant normalisation of grey matter thickness in the frontal lobe over time-an effect undetected by traditional longitudinal methods. Overall, our framework presents a flexible and effective methodology for analysing longitudinal neuroimaging data, providing insights into the progression of a disease that would otherwise be missed when using more traditional approaches.
3rd faculty of medicine Charles University Prague Czech Republic
Department of Cybernetics Czech Technical University Prague Prague Czech Republic
Donders Institute for Brain Cognition and Behaviour Nijmegen Netherlands
Max Planck Institute for Research on Collective Goods Bonn Germany
doi: 10.1101/2023.06.09.544217 PubMed
Před aktualizacídoi: 10.7554/eLife.95823.1 PubMed
Před aktualizacídoi: 10.7554/eLife.95823.2 PubMed
Před aktualizacídoi: 10.7554/eLife.95823.3 PubMed
Zobrazit více v PubMed
Berthet P, Haatveit BC, Kjelkenes R, Worker A, Kia SM, Wolfers T, Rutherford S, Alnaes D, Dinga R, Pedersen ML, Dahl A, Fernandez-Cabello S, Dazzan P, Agartz I, Nesvåg R, Ueland T, Andreassen OA, Simonsen C, Westlye LT, Melle I, Marquand A. A 10-year longitudinal study of brain cortical thickness in people with first-episode psychosis using normative models. Schizophrenia Bulletin. 2024;51:95–107. doi: 10.1093/schbul/sbae107. PubMed DOI PMC
Bethlehem RAI, Seidlitz J, White SR, Vogel JW, Anderson KM, Adamson C, Adler S, Alexopoulos GS, Anagnostou E, Areces-Gonzalez A, Astle DE, Auyeung B, Ayub M, Bae J, Ball G, Baron-Cohen S, Beare R, Bedford SA, Benegal V, Beyer F, Blangero J, Blesa Cábez M, Boardman JP, Borzage M, Bosch-Bayard JF, Bourke N, Calhoun VD, Chakravarty MM, Chen C, Chertavian C, Chetelat G, Chong YS, Cole JH, Corvin A, Costantino M, Courchesne E, Crivello F, Cropley VL, Crosbie J, Crossley N, Delarue M, Delorme R, Desrivieres S, Devenyi GA, Di Biase MA, Dolan R, Donald KA, Donohoe G, Dunlop K, Edwards AD, Elison JT, Ellis CT, Elman JA, Eyler L, Fair DA, Feczko E, Fletcher PC, Fonagy P, Franz CE, Galan-Garcia L, Gholipour A, Giedd J, Gilmore JH, Glahn DC, Goodyer IM, Grant PE, Groenewold NA, Gunning FM, Gur RE, Gur RC, Hammill CF, Hansson O, Hedden T, Heinz A, Henson RN, Heuer K, Hoare J, Holla B, Holmes AJ, Holt R, Huang H, Im K, Ipser J, Jack CR, Jr, Jackowski AP, Jia T, Johnson KA, Jones PB, Jones DT, Kahn RS, Karlsson H, Karlsson L, Kawashima R, Kelley EA, Kern S, Kim KW, Kitzbichler MG, Kremen WS, Lalonde F, Landeau B, Lee S, Lerch J, Lewis JD, Li J, Liao W, Liston C, Lombardo MV, Lv J, Lynch C, Mallard TT, Marcelis M, Markello RD, Mathias SR, Mazoyer B, McGuire P, Meaney MJ, Mechelli A, Medic N, Misic B, Morgan SE, Mothersill D, Nigg J, Ong MQW, Ortinau C, Ossenkoppele R, Ouyang M, Palaniyappan L, Paly L, Pan PM, Pantelis C, Park MM, Paus T, Pausova Z, Paz-Linares D, Pichet Binette A, Pierce K, Qian X, Qiu J, Qiu A, Raznahan A, Rittman T, Rodrigue A, Rollins CK, Romero-Garcia R, Ronan L, Rosenberg MD, Rowitch DH, Salum GA, Satterthwaite TD, Schaare HL, Schachar RJ, Schultz AP, Schumann G, Schöll M, Sharp D, Shinohara RT, Skoog I, Smyser CD, Sperling RA, Stein DJ, Stolicyn A, Suckling J, Sullivan G, Taki Y, Thyreau B, Toro R, Traut N, Tsvetanov KA, Tuulari JJ, Tzourio C, Vachon-Presseau É, Valdes-Sosa MJ, Valdes-Sosa PA, Valk SL, van Amelsvoort T, Vandekar SN, Vasung L, Victoria LW, Villeneuve S, Villringer A, Vértes PE, Wagstyl K, Wang YS, Warfield SK, Warrier V, Westman E, Westwater ML, Whalley HC, Witte AV, Yang N, Yeo B, Yun H, Zalesky A, Zar HJ, Zettergren A, Zhou JH, Ziauddeen H, Zugman A, Zuo XN, Bullmore ET, Alexander-Bloch AF, 3R-BRAIN. AIBL. Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s Disease Repository Without Borders Investigators. CALM Team. Cam-CAN. CCNP. COBRE. cVEDA. ENIGMA Developmental Brain Age Working Group. Developing Human Connectome Project. FinnBrain. Harvard Aging Brain Study. IMAGEN. KNE96. Mayo Clinic Study of Aging. NSPN. POND. PREVENT-AD Research Group. VETSA Brain charts for the human lifespan. Nature. 2022;604:525–533. doi: 10.1038/s41586-022-04554-y. PubMed DOI PMC
Canal-Rivero M, Ruiz-Veguilla M, Ortiz-García de la Foz V, López-Díaz A, Garrido-Torres N, Ayesa-Arriola R, Vazquez-Bourgon J, Mayoral-van Son J, Brambilla P, Kircher T, Romero-García R, Crespo-Facorro B. Longitudinal trajectories in negative symptoms and changes in brain cortical thickness: 10-year follow-up study. The British Journal of Psychiatry. 2023;223:309–318. doi: 10.1192/bjp.2022.192. PubMed DOI PMC
Casey BJ, Cannonier T, Conley MI, Cohen AO, Barch DM, Heitzeg MM, Soules ME, Teslovich T, Dellarco DV, Garavan H, Orr CA, Wager TD, Banich MT, Speer NK, Sutherland MT, Riedel MC, Dick AS, Bjork JM, Thomas KM, Chaarani B, Mejia MH, Hagler DJ, Daniela Cornejo M, Sicat CS, Harms MP, Dosenbach NUF, Rosenberg M, Earl E, Bartsch H, Watts R, Polimeni JR, Kuperman JM, Fair DA, Dale AM. The adolescent brain cognitive development (ABCD) study: imaging acquisition across 21 sites. Developmental Cognitive Neuroscience. 2018;32:43–54. doi: 10.1016/j.dcn.2018.03.001. PubMed DOI PMC
Cole TJ. The development of growth references and growth charts. Annals of Human Biology. 2012;39:382–394. doi: 10.3109/03014460.2012.694475. PubMed DOI PMC
Di Biase MA, Tian YE, Bethlehem RAI, Seidlitz J, Alexander-Bloch AF, Yeo BTT, Zalesky A. Mapping human brain charts cross-sectionally and longitudinally. PNAS. 2023;120:e2216798120. doi: 10.1073/pnas.2216798120. PubMed DOI PMC
Fraza CJ, Dinga R, Beckmann CF, Marquand AF. Warped Bayesian linear regression for normative modelling of big data. NeuroImage. 2021;245:118715. doi: 10.1016/j.neuroimage.2021.118715. PubMed DOI PMC
Habes M, Pomponio R, Shou H, Doshi J, Mamourian E, Erus G, Nasrallah I, Launer LJ, Rashid T, Bilgel M, Fan Y, Toledo JB, Yaffe K, Sotiras A, Srinivasan D, Espeland M, Masters C, Maruff P, Fripp J, Völzk H, Johnson SC, Morris JC, Albert MS, Miller MI, Bryan RN, Grabe HJ, Resnick SM, Wolk DA, Davatzikos C, iSTAGING consortium, the Preclinical AD consortium, the ADNI, and the CARDIA studies The brain chart of aging: machine-learning analytics reveals links between brain aging, white matter disease, amyloid burden, and cognition in the iSTAGING consortium of 10,216 harmonized MR scans. Alzheimer’s & Dementia. 2021;17:89–102. doi: 10.1002/alz.12178. PubMed DOI PMC
Kia SM, Huijsdens H, Rutherford S, de Boer A, Dinga R, Wolfers T, Berthet P, Mennes M, Andreassen OA, Westlye LT, Beckmann CF, Marquand AF. Closing the life-cycle of normative modeling using federated hierarchical bayesian regression. PLOS ONE. 2022;17:e0278776. doi: 10.1371/journal.pone.0278776. PubMed DOI PMC
Marquand AF, Rezek I, Buitelaar J, Beckmann CF. Understanding heterogeneity in clinical cohorts using normative models: beyond case-control studies. Biological Psychiatry. 2016;80:552–561. doi: 10.1016/j.biopsych.2015.12.023. PubMed DOI PMC
Marquand AF, Kia SM, Zabihi M, Wolfers T, Buitelaar JK, Beckmann CF. Conceptualizing mental disorders as deviations from normative functioning. Molecular Psychiatry. 2019;24:1415–1424. doi: 10.1038/s41380-019-0441-1. PubMed DOI PMC
Merritt K, Luque Laguna P, Irfan A, David AS. Longitudinal structural MRI findings in individuals at genetic and clinical high risk for psychosis: a systematic review. Frontiers in Psychiatry. 2021;12:620401. doi: 10.3389/fpsyt.2021.620401. PubMed DOI PMC
Pinaya WHL, Scarpazza C, Garcia-Dias R, Vieira S, Baecker L, F da Costa P, Redolfi A, Frisoni GB, Pievani M, Calhoun VD, Sato JR, Mechelli A. Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross-sectional multi-cohort study. Scientific Reports. 2021;11:15746. doi: 10.1038/s41598-021-95098-0. PubMed DOI PMC
Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage. 2012;61:1402–1418. doi: 10.1016/j.neuroimage.2012.02.084. PubMed DOI PMC
Rutherford S, Fraza C, Dinga R, Kia S. Charting brain growth and aging at high spatial precision. eLife. 2022;1:e72904. doi: 10.7554/eLife.72904. PubMed DOI PMC
Rutherford S, Marquand A. Braincharts. GitHub. 2024 https://github.com/predictive-clinical-neuroscience/braincharts
Rutherford S, Marquand A, Bayer J, Buckova B, Berthet P. Normative modeling demo with pcntoolkit. GitHub. 2024 https://github.com/predictive-clinical-neuroscience/PCNtoolkit-demo
Spaniel F, Tintera J, Rydlo J, Ibrahim I, Kasparek T, Horacek J, Zaytseva Y, Matejka M, Fialova M, Slovakova A, Mikolas P, Melicher T, Görnerova N, Höschl C, Hajek T. Altered neural correlate of the self-agency experience in first-episode schizophrenia-spectrum patients: an fMRI study. Schizophrenia Bulletin. 2016;42:916–925. doi: 10.1093/schbul/sbv188. PubMed DOI PMC
Wolfers T, Rokicki J, Alnaes D, Berthet P, Agartz I, Kia SM, Kaufmann T, Zabihi M, Moberget T, Melle I, Beckmann CF, Andreassen OA, Marquand AF, Westlye LT. Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder. Human Brain Mapping. 2021;42:2546–2555. doi: 10.1002/hbm.25386. PubMed DOI PMC
Zabihi M, Oldehinkel M, Wolfers T, Frouin V, Goyard D, Loth E, Charman T, Tillmann J, Banaschewski T, Dumas G, Holt R, Baron-Cohen S, Durston S, Bölte S, Murphy D, Ecker C, Buitelaar JK, Beckmann CF, Marquand AF. Dissecting the heterogeneous cortical anatomy of autism spectrum disorder using normative models. Biological Psychiatry. Cognitive Neuroscience and Neuroimaging. 2019;4:567–578. doi: 10.1016/j.bpsc.2018.11.013. PubMed DOI PMC