• This record comes from PubMed

Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review

. 2023 Nov 25 ; 16 (23) : . [epub] 20231125

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Soil contamination through heavy metals (HMs) is a serious environmental problem that needs to be addressed. One of the methods of remediating soils contaminated with HMs and reducing the environmental risks associated with them is to immobilize these HMs in the soil using specific amendment(s). The use of biochar as an organic amendment can be an environmentally friendly and practically feasible option, as (i) different types of biomass can be used for biochar production, which contributes to environmental sustainability, and (ii) the functionality of biochar can be improved, enabling efficient immobilization of HMs. Effective use of biochar to immobilize HMs in soil often requires modification of pristine biochar. There are various physical, chemical, and biological methods for modifying biochar that can be used at different stages of pyrolysis, i.e., before pyrolysis, during pyrolysis, and after pyrolysis. Such methods are still being intensively developed by testing different modification approaches in single or hybrid systems and investigating their effects on the immobilization of HMs in the soil and on the properties of the remediated soil. In general, there is more information on biochar modification and its performance in HM immobilization with physical and chemical methods than with microbial methods. This review provides an overview of the main biochar modification strategies related to the pyrolysis process. In addition, recent advances in biochar modification using physical and chemical methods, biochar-based composites, and biochar modified with HM-tolerant microorganisms are presented, including the effects of these methods on biochar properties and the immobilization of HMs in soil. Since modified biochar can have some negative effects, these issues are also addressed. Finally, future directions for modified biochar research are suggested in terms of scope, scale, timeframe, and risk assessment. This review aims to popularize the in situ immobilization of HMs with modified biochar.

See more in PubMed

Xu L., Dai H., Skuza L., Xu J., Shi J., Wang Y., Shentu J., Wei S. Integrated Survey on the Heavy Metal Distribution, Sources and Risk Assessment of Soil in a Commonly Developed Industrial Area. Ecotoxicol. Environ. Saf. 2022;236:113462. doi: 10.1016/j.ecoenv.2022.113462. PubMed DOI

Rouhani A., Makki M., Hejcman M., Shirzad R., Gusiatin M.Z. Risk Assessment and Spatial Distribution of Heavy Metals with an Emphasis on Antimony (Sb) in Urban Soil in Bojnourd, Iran. Sustainability. 2023;15:3495. doi: 10.3390/su15043495. DOI

Kong F., Chen Y., Huang L., Yang Z., Zhu K. Human Health Risk Visualization of Potentially Toxic Elements in Farmland Soil: A Combined Method of Source and Probability. Ecotoxicol. Environ. Saf. 2021;211:111922. doi: 10.1016/j.ecoenv.2021.111922. PubMed DOI

Liu Z., Zhou J., Zhang J., Mao Y., Huang X., Qian G. Evaluation for the Heavy Metal Risk in Fine Particulate Matter from the Perspective of Urban Energy and Industrial Structure in China: A Meta-Analysis. J. Clean. Prod. 2020;244:118597. doi: 10.1016/j.jclepro.2019.118597. DOI

Ayangbenro A., Babalola O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health. 2017;14:94. doi: 10.3390/ijerph14010094. PubMed DOI PMC

Gholizadeh M., Hu X. Removal of Heavy Metals from Soil with Biochar Composite: A Critical Review of the Mechanism. J. Environ. Chem. Eng. 2021;9:105830. doi: 10.1016/j.jece.2021.105830. DOI

Ayele A., Suresh A., Benor S., Konwarh R. Optimization of Chromium(VI) Removal by Indigenous Microalga (Chlamydomonas Sp.)-Based Biosorbent Using Response Surface Methodology. Water Environ. Res. 2021;93:1276–1288. doi: 10.1002/wer.1510. PubMed DOI

Ambika S., Kumar M., Pisharody L., Malhotra M., Kumar G., Sreedharan V., Singh L., Nidheesh P.V., Bhatnagar A. Modified Biochar as a Green Adsorbent for Removal of Hexavalent Chromium from Various Environmental Matrices: Mechanisms, Methods, and Prospects. Chem. Eng. J. 2022;439:135716. doi: 10.1016/j.cej.2022.135716. DOI

Zheng C., Yang Z., Si M., Zhu F., Yang W., Zhao F., Shi Y. Application of Biochars in the Remediation of Chromium Contamination: Fabrication, Mechanisms, and Interfering Species. J. Hazard. Mater. 2021;407:124376. doi: 10.1016/j.jhazmat.2020.124376. PubMed DOI

Kong L., Gao Y., Zhou Q., Zhao X., Sun Z. Biochar Accelerates PAHs Biodegradation in Petroleum-Polluted Soil by Biostimulation Strategy. J. Hazard. Mater. 2018;343:276–284. doi: 10.1016/j.jhazmat.2017.09.040. PubMed DOI

Jobby R., Jha P., Yadav A.K., Desai N. Biosorption and Biotransformation of Hexavalent Chromium [Cr(VI)]: A Comprehensive Review. Chemosphere. 2018;207:255–266. doi: 10.1016/j.chemosphere.2018.05.050. PubMed DOI

Qiu M., Liu L., Ling Q., Cai Y., Yu S., Wang S., Fu D., Hu B., Wang X. Biochar for the Removal of Contaminants from Soil and Water: A Review. Biochar. 2022;4:19. doi: 10.1007/s42773-022-00146-1. DOI

Yang T., Xu Y., Huang Q., Sun Y., Liang X., Wang L., Qin X., Zhao L. An Efficient Biochar Synthesized by Iron-Zinc Modified Corn Straw for Simultaneously Immobilization Cd in Acidic and Alkaline Soils. Environ. Pollut. 2021;291:118129. doi: 10.1016/j.envpol.2021.118129. PubMed DOI

Rao M.A., Di Rauso Simeone G., Scelza R., Conte P. Biochar Based Remediation of Water and Soil Contaminated by Phenanthrene and Pentachlorophenol. Chemosphere. 2017;186:193–201. doi: 10.1016/j.chemosphere.2017.07.125. PubMed DOI

Turan V. Potential of Pistachio Shell Biochar and Dicalcium Phosphate Combination to Reduce Pb Speciation in Spinach, Improved Soil Enzymatic Activities, Plant Nutritional Quality, and Antioxidant Defense System. Chemosphere. 2020;245:125611. doi: 10.1016/j.chemosphere.2019.125611. PubMed DOI

Rangabhashiyam S., dos Santos Lins P.V., de Magalhães Oliveira L.M., Sepulveda P., Ighalo J.O., Rajapaksha A.U., Meili L. Sewage Sludge-Derived Biochar for the Adsorptive Removal of Wastewater Pollutants: A Critical Review. Environ. Pollut. 2022;293:118581. doi: 10.1016/j.envpol.2021.118581. PubMed DOI

Marinos S., Agapios A., Terpsithea P., Michail T., Zorpas A.A., Hamdi H. Tomato Processing By-Products: Sustainable Applications. Elsevier; Amsterdam, The Netherlands: 2022. Biochar Production from the Pyrolysis of Tomato Processing Residues; pp. 171–200.

Li Y., Xing B., Ding Y., Han X., Wang S. A Critical Review of the Production and Advanced Utilization of Biochar via Selective Pyrolysis of Lignocellulosic Biomass. Bioresour. Technol. 2020;312:123614. doi: 10.1016/j.biortech.2020.123614. PubMed DOI

Raud M., Kikas T., Sippula O., Shurpali N.J. Potentials and Challenges in Lignocellulosic Biofuel Production Technology. Renew. Sustain. Energy Rev. 2019;111:44–56. doi: 10.1016/j.rser.2019.05.020. DOI

Nidheesh P.V., Gopinath A., Ranjith N., Praveen Akre A., Sreedharan V., Suresh Kumar M. Potential Role of Biochar in Advanced Oxidation Processes: A Sustainable Approach. Chem. Eng. J. 2021;405:126582. doi: 10.1016/j.cej.2020.126582. DOI

Ponnusamy V.K., Nagappan S., Bhosale R.R., Lay C.H., Duc Nguyen D., Pugazhendhi A., Chang S.W., Kumar G. Review on Sustainable Production of Biochar through Hydrothermal Liquefaction: Physico-Chemical Properties and Applications. Bioresour. Technol. 2020;310:123414. doi: 10.1016/j.biortech.2020.123414. PubMed DOI

Leng L., Xiong Q., Yang L., Li H., Zhou Y., Zhang W., Jiang S., Li H., Huang H. An Overview on Engineering the Surface Area and Porosity of Biochar. Sci. Total Environ. 2021;763:144204. doi: 10.1016/j.scitotenv.2020.144204. PubMed DOI

Sakhiya A.K., Anand A., Kaushal P. Production, Activation, and Applications of Biochar in Recent Times. Biochar. 2020;2:253–285. doi: 10.1007/s42773-020-00047-1. DOI

Zhang A., Li X., Xing J., Xu G. Adsorption of Potentially Toxic Elements in Water by Modified Biochar: A Review. J. Environ. Chem. Eng. 2020;8:104196. doi: 10.1016/j.jece.2020.104196. DOI

Masrura S.U., Dissanayake P., Sun Y., Ok Y.S., Tsang D.C.W., Khan E. Sustainable Use of Biochar for Resource Recovery and Pharmaceutical Removal from Human Urine: A Critical Review. Crit. Rev. Environ. Sci. Technol. 2021;51:3016–3048. doi: 10.1080/10643389.2020.1818497. DOI

Zhao N., Zhao C., Tsang D.C.W., Liu K., Zhu L., Zhang W., Zhang J., Tang Y., Qiu R. Microscopic Mechanism about the Selective Adsorption of Cr(VI) from Salt Solution on O-Rich and N-Rich Biochars. J. Hazard. Mater. 2021;404:124162. doi: 10.1016/j.jhazmat.2020.124162. PubMed DOI

Sun D., Li F., Jin J., Khan S., Eltohamy K.M., He M., Liang X. Qualitative and Quantitative Investigation on Adsorption Mechanisms of Cd(II) on Modified Biochar Derived from Co-Pyrolysis of Straw and Sodium Phytate. Sci. Total Environ. 2022;829:154599. doi: 10.1016/j.scitotenv.2022.154599. PubMed DOI

Gao R., Xiang L., Hu H., Fu Q., Zhu J., Liu Y., Huang G. High-Efficiency Removal Capacities and Quantitative Sorption Mechanisms of Pb by Oxidized Rape Straw Biochars. Sci. Total Environ. 2020;699:134262. doi: 10.1016/j.scitotenv.2019.134262. PubMed DOI

Wang F., Jin L., Guo C., Min L., Zhang P., Sun H., Zhu H., Zhang C. Enhanced Heavy Metals Sorption by Modified Biochars Derived from Pig Manure. Sci. Total Environ. 2021;786:147595. doi: 10.1016/j.scitotenv.2021.147595. DOI

Huang S.W., Chen X., Wang D.D., Jia H.L., Wu L. Bio-Reduction and Synchronous Removal of Hexavalent Chromium from Aqueous Solutions Using Novel Microbial Cell/Algal-Derived Biochar Particles: Turning an Environmental Problem into an Opportunity. Bioresour. Technol. 2020;309:123304. doi: 10.1016/j.biortech.2020.123304. PubMed DOI

Anae J., Ahmad N., Kumar V., Thakur V.K., Gutierrez T., Yang X.J., Cai C., Yang Z., Coulon F. Recent Advances in Biochar Engineering for Soil Contaminated with Complex Chemical Mixtures: Remediation Strategies and Future Perspectives. Sci. Total Environ. 2021;767:144351. doi: 10.1016/j.scitotenv.2020.144351. PubMed DOI

Hu J., Zhao L., Luo J., Gong H., Zhu N. A Sustainable Reuse Strategy of Converting Waste Activated Sludge into Biochar for Contaminants Removal from Water: Modifications, Applications and Perspectives. J. Hazard. Mater. 2022;438:129437. doi: 10.1016/j.jhazmat.2022.129437. PubMed DOI

Gong H., Zhao L., Rui X., Hu J., Zhu N. A Review of Pristine and Modified Biochar Immobilizing Typical Heavy Metals in Soil: Applications and Challenges. J. Hazard. Mater. 2022;432:128668. doi: 10.1016/j.jhazmat.2022.128668. PubMed DOI

Bao Z., Shi C., Tu W., Li L., Li Q. Recent Developments in Modification of Biochar and Its Application in Soil Pollution Control and Ecoregulation. Environ. Pollut. 2022;313:120184. doi: 10.1016/j.envpol.2022.120184. PubMed DOI

Blenis N., Hue N., Maaz T.M.C., Kantar M. Biochar Production, Modification, and Its Uses in Soil Remediation: A Review. Sustainability. 2023;15:3442. doi: 10.3390/su15043442. DOI

Chen H., Gao Y., Li J., Fang Z., Bolan N., Bhatnagar A., Gao B., Hou D., Wang S., Song H., et al. Engineered Biochar for Environmental Decontamination in Aquatic and Soil Systems: A Review. Carbon Res. 2022;1:4. doi: 10.1007/s44246-022-00005-5. DOI

Sinha R., Kumar R., Sharma P., Kant N., Shang J., Aminabhavi T.M. Removal of Hexavalent Chromium via Biochar-Based Adsorbents: State-of-the-Art, Challenges, and Future Perspectives. J. Environ. Manag. 2022;317:115356. doi: 10.1016/j.jenvman.2022.115356. PubMed DOI

Liang M., Lu L., He H., Li J., Zhu Z., Zhu Y. Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability. 2021;13:14041. doi: 10.3390/su132414041. DOI

Gueret Yadiberet Menzembere E.R., He Y., Dong Y., Li B., Liu C., Lin H., Sambiani L. Insight into Modified Biochars and Their Immobilizing Effects on Heavy Metal(Loid)s in Contaminated Soils: Mechanisms and Influencing Factors. Pedosphere. 2023;33:23–33. doi: 10.1016/j.pedsph.2022.06.030. DOI

Islam M.M., Karim M.R., Zheng X., Li X. Heavy Metal and Metalloid Pollution of Soil, Water and Foods in Bangladesh: A Critical Review. Int. J. Environ. Res. Public Health. 2018;15:2825. doi: 10.3390/ijerph15122825. PubMed DOI PMC

Rouhani A., Azimzadeh H., Sotoudeh A., Ehdaei A. Health Risk Assessment of Heavy Metals in Archaeological Soils of Tappe Rivi Impacted by Ancient Anthropogenic Activity. Chem. Afr. 2022;5:1751–1764. doi: 10.1007/s42250-022-00428-y. DOI

Pérez A.P., Eugenio R.N. Status of Local Soil Contamination in Europe—Revision of the Indicator “Progress in the Management Contaminated Sites in Europe”. Publications Office; Luxembourg: 2018.

Qin G., Niu Z., Yu J., Li Z., Ma J., Xiang P. Soil Heavy Metal Pollution and Food Safety in China: Effects, Sources and Removing Technology. Chemosphere. 2021;267:129205. doi: 10.1016/j.chemosphere.2020.129205. PubMed DOI

van Liedekerke M., Prokop G., Rabl-Berger S., Kibblewhite M., Louwagie G. Progress in the Management of Contaminated Sites in Europe. Reference Report by the Joint Research Centre (JRC) of the European Commission. Publications Office; Rome, Italy: 2014.

FAO . Food and Agricultural Organization (FAO) Global Assessment of Soil Pollution—Summary for Policymakers. Food and Agricultural Organization (FAO) Publication; Rome, Italy: 2021.

Tóth G., Hermann T., Da Silva M.R., Montanarella L. Heavy Metals in Agricultural Soils of the European Union with Implications for Food Safety. Environ. Int. 2016;88:299–309. doi: 10.1016/j.envint.2015.12.017. PubMed DOI

Li X., Yang H., Zhang C., Zeng G., Liu Y., Xu W., Wu Y., Lan S. Spatial Distribution and Transport Characteristics of Heavy Metals around an Antimony Mine Area in Central China. Chemosphere. 2017;170:17–24. doi: 10.1016/j.chemosphere.2016.12.011. PubMed DOI

Rouhani A., Shahivand R. Potential Ecological Risk Assessment of Heavy Metals in Archaeology on an Example of the Tappe Rivi (Iran) SN Appl. Sci. 2020;2:1277. doi: 10.1007/s42452-020-3085-5. DOI

Li C., Zhou K., Qin W., Tian C., Qi M., Yan X., Han W. A Review on Heavy Metals Contamination in Soil: Effects, Sources, and Remediation Techniques. Soil Sediment. Contam. 2019;28:380–394. doi: 10.1080/15320383.2019.1592108. DOI

Briffa J., Sinagra E., Blundell R. Heavy Metal Pollution in the Environment and Their Toxicological Effects on Humans. Heliyon. 2020;6:e04691. doi: 10.1016/j.heliyon.2020.e04691. PubMed DOI PMC

Kazi T.G., Jamali M.K., Kazi G.H., Arain M.B., Afridi H.I., Siddiqui A. Evaluating the Mobility of Toxic Metals in Untreated Industrial Wastewater Sludge Using a BCR Sequential Extraction Procedure and a Leaching Test. Anal. Bioanal. Chem. 2005;383:297–304. doi: 10.1007/s00216-005-0004-y. PubMed DOI

Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Kirkham M.B., Scheckel K. Remediation of Heavy Metal(Loid)s Contaminated Soils—To Mobilize or to Immobilize? J. Hazard. Mater. 2014;266:141–166. doi: 10.1016/j.jhazmat.2013.12.018. PubMed DOI

Adebiyi F.M., Ayeni D.A. Chemical Speciation, Bioavailability and Risk Assessment of Potentially Toxic Metals in Soils around Petroleum Product Marketing Company as Environmental Degradation Indicators. Pet Res. 2022;7:286–296. doi: 10.1016/j.ptlrs.2021.08.006. DOI

Borah P., Gujre N., Rene E.R., Rangan L., Paul R.K., Karak T., Mitra S. Assessment of Mobility and Environmental Risks Associated with Copper, Manganese and Zinc in Soils of a Dumping Site around a Ramsar Site. Chemosphere. 2020;254:126852. doi: 10.1016/j.chemosphere.2020.126852. PubMed DOI

Chen R., Gao T., Cheng N., Ding G., Wang Q., Shi R., Hu G., Cai X. Application of DGT/DIFS to Assess Bioavailable Cd to Maize and Its Release in Agricultural Soils. J. Hazard. Mater. 2021;411:124837. doi: 10.1016/j.jhazmat.2020.124837. PubMed DOI

Gusiatin Z.M., Klik B., Kulikowska D. Tannic Acid for Remediation of Historically Arsenic-Contaminated Soils. Environ. Technol. 2017;40:1417490. doi: 10.1080/09593330.2017.1417490. PubMed DOI

Pavel P.B., Puschenreiter M., Wenzel W.W., Diacu E., Barbu C.H. Aided Phytostabilization Using Miscanthus Sinensis×giganteus on Heavy Metal-Contaminated Soils. Sci. Total Environ. 2014;479–480:125–131. doi: 10.1016/j.scitotenv.2014.01.097. PubMed DOI

Pérez-Esteban J., Escolástico C., Moliner A., Masaguer A. Chemical Speciation and Mobilization of Copper and Zinc in Naturally Contaminated Mine Soils with Citric and Tartaric Acids. Chemosphere. 2013;90:276–283. doi: 10.1016/j.chemosphere.2012.06.065. PubMed DOI

Janoš P., Vávrová J., Herzogová L., Pilařová V. Effects of Inorganic and Organic Amendments on the Mobility (Leachability) of Heavy Metals in Contaminated Soil: A Sequential Extraction Study. Geoderma. 2010;159:335–341. doi: 10.1016/j.geoderma.2010.08.009. DOI

Bolan N.S., Duraisamy V.P. Role of Inorganic and Organic Soil Amendments on Immobilisation and Phytoavailability of Heavy Metals: A Review Involving Specific Case Studies. Proc. Aust. J. Soil Res. 2003;41:533–555. doi: 10.1071/SR02122. DOI

Harter R.D., Naidu R. Role of Metal-Organic Complexation in Metal Sorption by Soils. Adv. Agr. 1995;55:219–263.

Sarkar S., Sarkar B., Basak B.B., Mandal S., Biswas B., Srivastava P. Adaptive Soil Management: From Theory to Practices. Springer; Berlin/Heidelberg, Germany: 2017. Soil Mineralogical Perspective on Immobilization/Mobilization of Heavy Metals.

Fu F., Wang Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011;92:407–418. doi: 10.1016/j.jenvman.2010.11.011. PubMed DOI

Huisman J.L., Schouten G., Schultz C. Biologically Produced Sulphide for Purification of Process Streams, Effluent Treatment and Recovery of Metals in the Metal and Mining Industry. Hydrometallurgy. 2006;83:106–113. doi: 10.1016/j.hydromet.2006.03.017. DOI

Da̧browski A., Hubicki Z., Podkościelny P., Robens E. Selective Removal of the Heavy Metal Ions from Waters and Industrial Wastewaters by Ion-Exchange Method. Chemosphere. 2004;56:91–106. doi: 10.1016/j.chemosphere.2004.03.006. PubMed DOI

Vázquez G., Antorrena G., González J., Doval M.D. Adsorption of Heavy Metal Ions by Chemically Modified Pinus Pinaster Bark. Bioresour. Technol. 1994;48:251–255. doi: 10.1016/0960-8524(94)90154-6. DOI

Hubicki Z., Koodynsk D. Ion Exchange Technologies. Springer; Berlin/Heidelberg, Germany: 2012. Selective Removal of Heavy Metal Ions from Waters and Waste Waters Using Ion Exchange Methods.

Ippolito J.A., Berry C.M., Strawn D.G., Novak J.M., Levine J., Harley A. Biochars Reduce Mine Land Soil Bioavailable Metals. J. Environ. Qual. 2017;46:411–419. doi: 10.2134/jeq2016.10.0388. PubMed DOI

Qambrani N.A., Rahman M.M., Won S., Shim S., Ra C. Biochar Properties and Eco-Friendly Applications for Climate Change Mitigation, Waste Management, and Wastewater Treatment: A Review. Renew. Sustain. Energy Rev. 2017;79:255–273. doi: 10.1016/j.rser.2017.05.057. DOI

Chen Y., Shan R., Sun X. Adsorption of Cadmium by Magnesium-Modified Biochar at Different Pyrolysis Temperatures. BioResources. 2020;15:767–786. doi: 10.15376/biores.15.1.767-786. DOI

Rajapaksha A.U., Chen S.S., Tsang D.C.W., Zhang M., Vithanage M., Mandal S., Gao B., Bolan N.S., Ok Y.S. Engineered/Designer Biochar for Contaminant Removal/Immobilization from Soil and Water: Potential and Implication of Biochar Modification. Chemosphere. 2016;148:276–291. doi: 10.1016/j.chemosphere.2016.01.043. PubMed DOI

Tao Q., Chen Y., Zhao J., Li B., Li Y., Tao S., Li M., Li Q., Xu Q., Li Y., et al. Enhanced Cd Removal from Aqueous Solution by Biologically Modified Biochar Derived from Digestion Residue of Corn Straw Silage. Sci. Total Environ. 2019;674:213–222. doi: 10.1016/j.scitotenv.2019.03.438. PubMed DOI

Bedia J., Peñas-Garzón M., Gómez-Avilés A., Rodriguez J., Belver C. A Review on the Synthesis and Characterization of Biomass-Derived Carbons for Adsorption of Emerging Contaminants from Water. C J. Carbon Res. 2018;4:63. doi: 10.3390/c4040063. DOI

Hu Q., Jung J., Chen D., Leong K., Song S., Li F., Mohan B.C., Yao Z., Prabhakar A.K., Lin X.H., et al. Biochar Industry to Circular Economy. Sci. Total Environ. 2021;757:143820. doi: 10.1016/j.scitotenv.2020.143820. PubMed DOI

Sun Y., Xiong X., He M., Xu Z., Hou D., Zhang W., Ok Y.S., Rinklebe J., Wang L., Tsang D.C.W. Roles of Biochar-Derived Dissolved Organic Matter in Soil Amendment and Environmental Remediation: A Critical Review. Chem. Eng. J. 2021;424:130387. doi: 10.1016/j.cej.2021.130387. DOI

Thomas P., Lai C.W., Bin Johan M.R. Recent Developments in Biomass-Derived Carbon as a Potential Sustainable Material for Super-Capacitor-Based Energy Storage and Environmental Applications. J. Anal. Appl. Pyrolysis. 2019;140:54–85. doi: 10.1016/j.jaap.2019.03.021. DOI

Zhang L., Guo J., Huang X., Wang W., Sun P., Li Y., Han J. Functionalized Biochar-Supported Magnetic MnFe2O4 Nanocomposite for the Removal of Pb(II) and Cd(II) RSC Adv. 2019;9:365–376. doi: 10.1039/C8RA09061K. PubMed DOI PMC

Li Y., Yu H., Liu L., Yu H. Application of Co-Pyrolysis Biochar for the Adsorption and Immobilization of Heavy Metals in Contaminated Environmental Substrates. J. Hazard. Mater. 2021;420:126655. doi: 10.1016/j.jhazmat.2021.126655. PubMed DOI

Li Y., Shaheen S.M., Azeem M., Zhang L., Feng C., Peng J., Qi W., Liu J., Luo Y., Peng Y., et al. Removal of Lead (Pb+2) from Contaminated Water Using a Novel MoO3-Biochar Composite: Performance and Mechanism. Environ. Pollut. 2022;308:119693. doi: 10.1016/j.envpol.2022.119693. PubMed DOI

Xiong Z., Huanhuan Z., Jing W., Wei C., Yingquan C., Gao X., Haiping Y., Hanping C. Physicochemical and Adsorption Properties of Biochar from Biomass-Based Pyrolytic Polygeneration: Effects of Biomass Species and Temperature. Biochar. 2021;3:657–670. doi: 10.1007/s42773-021-00102-5. DOI

Xu Y., Wu S., Huang F., Huang H., Yi Z., Xue S. Biomodification of Feedstock for Quality-Improved Biochar: A Green Method to Enhance the Cd Sorption Capacity of Miscanthus Lutarioriparius-Derived Biochar. J. Clean. Prod. 2022;350:131241. doi: 10.1016/j.jclepro.2022.131241. DOI

Tan X.F., Liu Y.G., Gu Y.L., Xu Y., Zeng G.M., Hu X.J., Liu S.B., Wang X., Liu S.M., Li J. Biochar-Based Nano-Composites for the Decontamination of Wastewater: A Review. Bioresour. Technol. 2016;212:318–333. doi: 10.1016/j.biortech.2016.04.093. PubMed DOI

Gong J., Lin H., Antonietti M., Yuan J. Nitrogen-Doped Porous Carbon Nanosheets Derived from Poly(Ionic Liquid)s: Hierarchical Pore Structures for Efficient CO2 Capture and Dye Removal. J. Mater. Chem. A Mater. 2016;4:7313–7321. doi: 10.1039/C6TA01945E. DOI

Yao Y., Gao B., Chen J., Zhang M., Inyang M., Li Y., Alva A., Yang L. Engineered Carbon (Biochar) Prepared by Direct Pyrolysis of Mg-Accumulated Tomato Tissues: Characterization and Phosphate Removal Potential. Bioresour. Technol. 2013;138:8–13. doi: 10.1016/j.biortech.2013.03.057. PubMed DOI

Pan J., Deng H., Du Z., Tian K., Zhang J. Design of Nitrogen-Phosphorus-Doped Biochar and Its Lead Adsorption Performance. Environ. Sci. Pollut. Res. 2022;29:28984–28994. doi: 10.1007/s11356-021-17335-3. PubMed DOI

Taherymoosavi S., Joseph S., Pace B., Munroe P. A Comparison between the Characteristics of Single- and Mixed-Feedstock Biochars Generated from Wheat Straw and Basalt. J. Anal. Appl. Pyrolysis. 2018;129:123–133. doi: 10.1016/j.jaap.2017.11.020. DOI

Meng J., Tao M., Wang L., Liu X., Xu J. Changes in Heavy Metal Bioavailability and Speciation from a Pb-Zn Mining Soil Amended with Biochars from Co-Pyrolysis of Rice Straw and Swine Manure. Sci. Total Environ. 2018;633:300–307. doi: 10.1016/j.scitotenv.2018.03.199. PubMed DOI

Oh S.Y., Seo T.C. Upgrading Biochar: Via Co-Pyrolyzation of Agricultural Biomass and Polyethylene Terephthalate Wastes. RSC Adv. 2019;9:28284–28290. doi: 10.1039/C9RA05518E. PubMed DOI PMC

Min X., Ge T., Li H., Shi Y., Fang T., Sheng B., Li H., Dong X. Combining Impregnation and Co-Pyrolysis to Reduce the Environmental Risk of Biochar Derived from Sewage Sludge. Chemosphere. 2022;290:133371. doi: 10.1016/j.chemosphere.2021.133371. PubMed DOI

Dong H., Deng J., Xie Y., Zhang C., Jiang Z., Cheng Y., Hou K., Zeng G. Stabilization of Nanoscale Zero-Valent Iron (NZVI) with Modified Biochar for Cr(VI) Removal from Aqueous Solution. J. Hazard. Mater. 2017;332:79–86. doi: 10.1016/j.jhazmat.2017.03.002. PubMed DOI

Wang L., Wang Y., Ma F., Tankpa V., Bai S., Guo X., Wang X. Mechanisms and Reutilization of Modified Biochar Used for Removal of Heavy Metals from Wastewater: A Review. Sci. Total Environ. 2019;668:1298–1309. doi: 10.1016/j.scitotenv.2019.03.011. PubMed DOI

Peng P., Lang Y.H., Wang X.M. Adsorption Behavior and Mechanism of Pentachlorophenol on Reed Biochars: PH Effect, Pyrolysis Temperature, Hydrochloric Acid Treatment and Isotherms. Ecol. Eng. 2016;90:225–233. doi: 10.1016/j.ecoleng.2016.01.039. DOI

Sun K., Tang J., Gong Y., Zhang H. Characterization of Potassium Hydroxide (KOH) Modified Hydrochars from Different Feedstocks for Enhanced Removal of Heavy Metals from Water. Environ. Sci. Pollut. Res. 2015;22:16640–16651. doi: 10.1007/s11356-015-4849-0. PubMed DOI

Xiong Z., Shihong Z., Haiping Y., Tao S., Yingquan C., Hanping C. Influence of NH3/CO2 Modification on the Characteristic of Biochar and the CO2 Capture. Bioenergy Res. 2013;6:1147–1153. doi: 10.1007/s12155-013-9304-9. DOI

Zhang J., Lü F., Shao L., He P. The Use of Biochar-Amended Composting to Improve the Humification and Degradation of Sewage Sludge. Bioresour. Technol. 2014;168:252–258. doi: 10.1016/j.biortech.2014.02.080. PubMed DOI

Chen B., Chen Z., Lv S. A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate. Bioresour. Technol. 2011;102:716–723. doi: 10.1016/j.biortech.2010.08.067. PubMed DOI

Wang S., Gao B., Zimmerman A.R., Li Y., Ma L., Harris W.G., Migliaccio K.W. Removal of Arsenic by Magnetic Biochar Prepared from Pinewood and Natural Hematite. Bioresour. Technol. 2015;175:391–395. doi: 10.1016/j.biortech.2014.10.104. PubMed DOI

Wu J., Li Z., Huang D., Liu X., Tang C., Parikh S.J., Xu J. A Novel Calcium-Based Magnetic Biochar Is Effective in Stabilization of Arsenic and Cadmium Co-Contamination in Aerobic Soils. J. Hazard. Mater. 2020;387:122010. doi: 10.1016/j.jhazmat.2019.122010. PubMed DOI

Zhang H., Shao J., Zhang S., Zhang X., Chen H. Effect of Phosphorus-Modified Biochars on Immobilization of Cu (II), Cd (II), and As (V) in Paddy Soil. J. Hazard. Mater. 2020;390:121349. doi: 10.1016/j.jhazmat.2019.121349. PubMed DOI

Sun J., Wang P., Guo Y., Hu B., Wang X. Effect of Biochar Derived from Co-Pyrolysis of Sewage Sludge and Rice Straw on Cadmium Immobilization in Paddy Soil. Environ. Sci. Pollut. Res. 2023;30:74808–74819. doi: 10.1007/s11356-023-26826-4. PubMed DOI

Gao R., Hu H., Fu Q., Li Z., Xing Z., Ali U., Zhu J., Liu Y. Remediation of Pb, Cd, and Cu Contaminated Soil by Co-Pyrolysis Biochar Derived from Rape Straw and Orthophosphate: Speciation Transformation, Risk Evaluation and Mechanism Inquiry. Sci. Total Environ. 2020;730:139119. doi: 10.1016/j.scitotenv.2020.139119. PubMed DOI

Mujtaba Munir M.A., Yousaf B., Ali M.U., Dan C., Abbas Q., Arif M., Yang X. In Situ Synthesis of Micro-Plastics Embedded Sewage-Sludge Co-Pyrolyzed Biochar: Implications for the Remediation of Cr and Pb Availability and Enzymatic Activities from the Contaminated Soil. J. Clean. Prod. 2021;302:127005. doi: 10.1016/j.jclepro.2021.127005. DOI

Xia Y., Li Y., Sun Y., Miao W., Liu Z. Co-Pyrolysis of Corn Stover with Industrial Coal Ash for in Situ Efficient Remediation of Heavy Metals in Multi-Polluted Soil. Environ. Pollut. 2021;289:117840. doi: 10.1016/j.envpol.2021.117840. PubMed DOI

Devi P., Saroha A.K. Synthesis of the Magnetic Biochar Composites for Use as an Adsorbent for the Removal of Pentachlorophenol from the Effluent. Bioresour. Technol. 2014;169:525–531. doi: 10.1016/j.biortech.2014.07.062. PubMed DOI

Shan D., Deng S., Zhao T., Wang B., Wang Y., Huang J., Yu G., Winglee J., Wiesner M.R. Preparation of Ultrafine Magnetic Biochar and Activated Carbon for Pharmaceutical Adsorption and Subsequent Degradation by Ball Milling. J. Hazard. Mater. 2016;305:156–163. doi: 10.1016/j.jhazmat.2015.11.047. PubMed DOI PMC

Reguyal F., Sarmah A.K., Gao W. Synthesis of Magnetic Biochar from Pine Sawdust via Oxidative Hydrolysis of FeCl2 for the Removal Sulfamethoxazole from Aqueous Solution. J. Hazard. Mater. 2017;321:868–878. doi: 10.1016/j.jhazmat.2016.10.006. PubMed DOI

Chen D., Wang X., Wang X., Feng K., Su J., Dong J. The Mechanism of Cadmium Sorption by Sulphur-Modified Wheat Straw Biochar and Its Application Cadmium-Contaminated Soil. Sci. Total Environ. 2020;714:136550. doi: 10.1016/j.scitotenv.2020.136550. PubMed DOI

Lin L., Li Z., Liu X., Qiu W., Song Z. Effects of Fe-Mn Modified Biochar Composite Treatment on the Properties of As-Polluted Paddy Soil. Environ. Pollut. 2019;244:600–607. doi: 10.1016/j.envpol.2018.10.011. PubMed DOI

Tu C., Wei J., Guan F., Liu Y., Sun Y., Luo Y. Biochar and Bacteria Inoculated Biochar Enhanced Cd and Cu Immobilization and Enzymatic Activity in a Polluted Soil. Environ. Int. 2020;137:105576. doi: 10.1016/j.envint.2020.105576. PubMed DOI

Sajjadi B., Chen W.Y., Egiebor N.O. A Comprehensive Review on Physical Activation of Biochar for Energy and Environmental Applications. Rev. Chem. Eng. 2019;35:735–776. doi: 10.1515/revce-2017-0113. DOI

Kumar M., Xiong X., Sun Y., Yu I.K.M., Tsang D.C.W., Hou D., Gupta J., Bhaskar T., Pandey A. Critical Review on Biochar-Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery. Adv. Sustain. Syst. 2020;4:1900149. doi: 10.1002/adsu.201900149. DOI

Peterson S.C., Jackson M.A., Kim S., Palmquist D.E. Increasing Biochar Surface Area: Optimization of Ball Milling Parameters. Powder Technol. 2012;228:115–120. doi: 10.1016/j.powtec.2012.05.005. DOI

Lyu H., Gao B., He F., Zimmerman A.R., Ding C., Huang H., Tang J. Effects of Ball Milling on the Physicochemical and Sorptive Properties of Biochar: Experimental Observations and Governing Mechanisms. Environ. Pollut. 2018;233:54–63. doi: 10.1016/j.envpol.2017.10.037. PubMed DOI

Naghdi M., Taheran M., Brar S.K., Rouissi T., Verma M., Surampalli R.Y., Valero J.R. A Green Method for Production of Nanobiochar by Ball Milling- Optimization and Characterization. J. Clean. Prod. 2017;164:1394–1405. doi: 10.1016/j.jclepro.2017.07.084. DOI

Yi P., Pignatello J.J., Uchimiya M., White J.C. Heteroaggregation of Cerium Oxide Nanoparticles and Nanoparticles of Pyrolyzed Biomass. Environ. Sci. Technol. 2015;49:13294–13303. doi: 10.1021/acs.est.5b03541. PubMed DOI

Yang Y., Piao Y., Wang R., Su Y., Liu N., Lei Y. Nonmetal Function Groups of Biochar for Pollutants Removal: A Review. J. Hazard. Mater. Adv. 2022;8:100171. doi: 10.1016/j.hazadv.2022.100171. DOI

Wang B., Gao B., Fang J. Recent Advances in Engineered Biochar Productions and Applications. Crit. Rev. Environ. Sci. Technol. 2017;47:1418580. doi: 10.1080/10643389.2017.1418580. DOI

Qiu B., Tao X., Wang H., Li W., Ding X., Chu H. Biochar as a Low-Cost Adsorbent for Aqueous Heavy Metal Removal: A Review. J. Anal. Appl. Pyrolysis. 2021;155:105081. doi: 10.1016/j.jaap.2021.105081. DOI

Luque R., Menéndez J.A., Arenillas A., Cot J. Microwave-Assisted Pyrolysis of Biomass Feedstocks: The Way Forward? Energy Environ. Sci. 2012;5:5481–5488. doi: 10.1039/C1EE02450G. DOI

Yagmur E., Ozmak M., Aktas Z. A Novel Method for Production of Activated Carbon from Waste Tea by Chemical Activation with Microwave Energy. Fuel. 2008;87:3278–3285. doi: 10.1016/j.fuel.2008.05.005. DOI

Mohamed B.A., Kim C.S., Ellis N., Bi X. Microwave-Assisted Catalytic Pyrolysis of Switchgrass for Improving Bio-Oil and Biochar Properties. Bioresour. Technol. 2016;201:121–132. doi: 10.1016/j.biortech.2015.10.096. PubMed DOI

Lee J., Yang X., Cho S.H., Kim J.K., Lee S.S., Tsang D.C.W., Ok Y.S., Kwon E.E. Pyrolysis Process of Agricultural Waste Using CO2 for Waste Management, Energy Recovery, and Biochar Fabrication. Appl. Energy. 2017;185:214–222. doi: 10.1016/j.apenergy.2016.10.092. DOI

Biswas A.K., Umeki K., Yang W., Blasiak W. Change of Pyrolysis Characteristics and Structure of Woody Biomass Due to Steam Explosion Pretreatment. Fuel Process. Technol. 2011;92:1849–1854. doi: 10.1016/j.fuproc.2011.04.038. DOI

Zoroufchi Benis K., Motalebi Damuchali A., Soltan J., McPhedran K.N. Treatment of Aqueous Arsenic—A Review of Biochar Modification Methods. Sci. Total Environ. 2020;739:139750. doi: 10.1016/j.scitotenv.2020.139750. PubMed DOI

Chia C.H., Downie A., Munroe P. Biochar for Environmental Management. Earthscan Publications Ltd.; Oxford, UK: 2015. Characteristics of Biochar: Physical and Structural Properties; p. 89.

Ahmed M.B., Zhou J.L., Ngo H.H., Guo W., Chen M. Progress in the Preparation and Application of Modified Biochar for Improved Contaminant Removal from Water and Wastewater. Bioresour. Technol. 2016;214:836–851. doi: 10.1016/j.biortech.2016.05.057. PubMed DOI

Feng D., Zhao Y., Zhang Y., Sun S., Meng S., Guo Y., Huang Y. Effects of K and Ca on Reforming of Model Tar Compounds with Pyrolysis Biochars under H2O or CO2. Chem. Eng. J. 2016;306:422–432. doi: 10.1016/j.cej.2016.07.065. DOI

Trakal L., Veselská V., Šafařík I., Vítková M., Číhalová S., Komárek M. Lead and Cadmium Sorption Mechanisms on Magnetically Modified Biochars. Bioresour. Technol. 2016;203:318–324. doi: 10.1016/j.biortech.2015.12.056. PubMed DOI

Lin H., Wang Z., Liu C., Dong Y. Technologies for Removing Heavy Metal from Contaminated Soils on Farmland: A Review. Chemosphere. 2022;305:135457. doi: 10.1016/j.chemosphere.2022.135457. PubMed DOI

Rizwan M., Lin Q., Chen X., Li Y., Li G., Zhao X., Tian Y. Synthesis, Characterization and Application of Magnetic and Acid Modified Biochars Following Alkaline Pretreatment of Rice and Cotton Straws. Sci. Total Environ. 2020;714:136532. doi: 10.1016/j.scitotenv.2020.136532. PubMed DOI

Yi Y., Huang Z., Lu B., Xian J., Tsang E.P., Cheng W., Fang J., Fang Z. Magnetic Biochar for Environmental Remediation: A Review. Bioresour. Technol. 2020;298:122468. doi: 10.1016/j.biortech.2019.122468. PubMed DOI

Fu H., Ma S., Zhao P., Xu S., Zhan S. Activation of Peroxymonosulfate by Graphitized Hierarchical Porous Biochar and MnFe2O4 Magnetic Nanoarchitecture for Organic Pollutants Degradation: Structure Dependence and Mechanism. Chem. Eng. J. 2019;360:157–170. doi: 10.1016/j.cej.2018.11.207. DOI

Tang L., Yu J., Pang Y., Zeng G., Deng Y., Wang J., Ren X., Ye S., Peng B., Feng H. Sustainable Efficient Adsorbent: Alkali-Acid Modified Magnetic Biochar Derived from Sewage Sludge for Aqueous Organic Contaminant Removal. Chem. Eng. J. 2018;336:160–169. doi: 10.1016/j.cej.2017.11.048. DOI

Zhang H., Xue G., Chen H., Li X. Magnetic Biochar Catalyst Derived from Biological Sludge and Ferric Sludge Using Hydrothermal Carbonization: Preparation, Characterization and Its Circulation in Fenton Process for Dyeing Wastewater Treatment. Chemosphere. 2018;191:64–71. doi: 10.1016/j.chemosphere.2017.10.026. PubMed DOI

Zhong D., Zhang Y., Wang L., Chen J., Jiang Y., Tsang D.C.W., Zhao Z., Ren S., Liu Z., Crittenden J.C. Mechanistic Insights into Adsorption and Reduction of Hexavalent Chromium from Water Using Magnetic Biochar Composite: Key Roles of Fe3O4 and Persistent Free Radicals. Environ. Pollut. 2018;243:1302–1309. doi: 10.1016/j.envpol.2018.08.093. PubMed DOI

Fang G., Liu C., Gao J., Dionysiou D.D., Zhou D. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ. Sci. Technol. 2015;49:5645–5653. doi: 10.1021/es5061512. PubMed DOI

Oladipo A.A., Ifebajo A.O. Highly Efficient Magnetic Chicken Bone Biochar for Removal of Tetracycline and Fluorescent Dye from Wastewater: Two-Stage Adsorber Analysis. J. Environ. Manag. 2018;209:9–16. doi: 10.1016/j.jenvman.2017.12.030. PubMed DOI

Xie Y., Wang L., Li H., Westholm L.J., Carvalho L., Thorin E., Yu Z., Yu X., Skreiberg Ø. A Critical Review on Production, Modification and Utilization of Biochar. J. Anal. Appl. Pyrolysis. 2022;161:105405. doi: 10.1016/j.jaap.2021.105405. DOI

Anstey A., Vivekanandhan S., Rodriguez-Uribe A., Misra M., Mohanty A.K. Oxidative Acid Treatment and Characterization of New Biocarbon from Sustainable Miscanthus Biomass. Sci. Total Environ. 2016;550:241–247. doi: 10.1016/j.scitotenv.2016.01.015. PubMed DOI

Kalaiarasi R., Parameswari E., Davamani V., Sharmila D.J.S. Exploring the Potential of Biochar Activated with Phosphoric Acid towards Hexavalent Chromium Removal. Int. Res. J. Pure Appl. Chem. 2020;21:1–11. doi: 10.9734/irjpac/2020/v21i2030278. DOI

Ren J., Zhao Z., Ali A., Guan W., Xiao R., Wang J.J., Ma S., Guo D., Zhou B., Zhang Z., et al. Characterization of Phosphorus Engineered Biochar and Its Impact on Immobilization of Cd and Pb from Smelting Contaminated Soils. J. Soils Sediments. 2020;20:3041–3052. doi: 10.1007/s11368-019-02403-6. DOI

Amalina F., Syukor Abd Razak A., Krishnan S., Sulaiman H., Zularisam A.W., Nasrullah M. Advanced Techniques in the Production of Biochar from Lignocellulosic Biomass and Environmental Applications. Clean. Mater. 2022;6:100137. doi: 10.1016/j.clema.2022.100137. DOI

El-Naggar A., Lee S.S., Rinklebe J., Farooq M., Song H., Sarmah A.K., Zimmerman A.R., Ahmad M., Shaheen S.M., Ok Y.S. Biochar Application to Low Fertility Soils: A Review of Current Status, and Future Prospects. Geoderma. 2019;337:536–554. doi: 10.1016/j.geoderma.2018.09.034. DOI

Qu J., Wang Y., Tian X., Jiang Z., Deng F., Tao Y., Jiang Q., Wang L., Zhang Y. KOH-Activated Porous Biochar with High Specific Surface Area for Adsorptive Removal of Chromium (VI) and Naphthalene from Water: Affecting Factors, Mechanisms and Reusability Exploration. J. Hazard. Mater. 2021;401:123292. doi: 10.1016/j.jhazmat.2020.123292. PubMed DOI

Wang J., Kang Y., Duan H., Zhou Y., Li H., Chen S., Tian F., Li L., Drosos M., Dong C., et al. Remediation of Cd2+ in Aqueous Systems by Alkali-Modified (Ca) Biochar and Quantitative Analysis of Its Mechanism. Arab. J. Chem. 2022;15:103750. doi: 10.1016/j.arabjc.2022.103750. DOI

Ding Z., Hu X., Wan Y., Wang S., Gao B. Removal of Lead, Copper, Cadmium, Zinc, and Nickel from Aqueous Solutions by Alkali-Modified Biochar: Batch and Column Tests. J. Ind. Eng. Chem. 2016;33:239–245. doi: 10.1016/j.jiec.2015.10.007. DOI

Wang Y., Liu R. H2O2 Treatment Enhanced the Heavy Metals Removal by Manure Biochar in Aqueous Solutions. Sci. Total Environ. 2018;628–629:1139–1148. doi: 10.1016/j.scitotenv.2018.02.137. PubMed DOI

Zhang K., Yi Y., Fang Z. Remediation of Cadmium or Arsenic Contaminated Water and Soil by Modified Biochar: A Review. Chemosphere. 2023;311:136914. doi: 10.1016/j.chemosphere.2022.136914. PubMed DOI

He X., Hong Z.-N., Jiang J., Dong G., Liu H., Xu R.-K. Enhancement of Cd(II) Adsorption by Rice Straw Biochar through Oxidant and Acid Modifications. Environ. Sci. Pollut. Res. 2021;28:42787–42797. doi: 10.1007/s11356-021-13742-8. PubMed DOI

Yakout S.M. Monitoring the Changes of Chemical Properties of Rice Straw-Derived Biochars Modified by Different Oxidizing Agents and Their Adsorptive Performance for Organics. Bioremediat. J. 2015;19:1029115. doi: 10.1080/10889868.2015.1029115. DOI

Liang T., Li L., Zhu C., Liu X., Li H., Su Q., Ye J., Geng B., Tian Y., Sardar M.F., et al. Adsorption of as(V) by the Novel and Efficient Adsorbent Cerium-Manganese Modified Biochar. Water. 2020;12:2720. doi: 10.3390/w12102720. DOI

Kambo H.S., Dutta A. A Comparative Review of Biochar and Hydrochar in Terms of Production, Physico-Chemical Properties and Applications. Renew. Sustain. Energy Rev. 2015;45:359–378. doi: 10.1016/j.rser.2015.01.050. DOI

Ao H., Cao W., Hong Y., Wu J., Wei L. Adsorption of Sulfate Ion from Water by Zirconium Oxide-Modified Biochar Derived from Pomelo Peel. Sci. Total Environ. 2020;708:135092. doi: 10.1016/j.scitotenv.2019.135092. PubMed DOI

Lei C., Sun Y., Tsang D.C.W., Lin D. Environmental Transformations and Ecological Effects of Iron-Based Nanoparticles. Environ. Pollut. 2018;232:10–30. doi: 10.1016/j.envpol.2017.09.052. PubMed DOI

Teow Y.H., Mohammad A.W. New Generation Nanomaterials for Water Desalination: A Review. Desalination. 2019;451:2–17. doi: 10.1016/j.desal.2017.11.041. DOI

Lu H., Dong H., Fan W., Zuo J., Li X. Aging and Behavior of Functional TiO2 Nanoparticles in Aqueous Environment. J. Hazard. Mater. 2017;325:113–119. doi: 10.1016/j.jhazmat.2016.11.013. PubMed DOI

Rodriguez-Narvaez O.M., Peralta-Hernandez J.M., Goonetilleke A., Bandala E.R. Biochar-Supported Nanomaterials for Environmental Applications. J. Ind. Eng. Chem. 2019;78:21–33. doi: 10.1016/j.jiec.2019.06.008. DOI

Premarathna K.S.D., Rajapaksha A.U., Sarkar B., Kwon E.E., Bhatnagar A., Ok Y.S., Vithanage M. Biochar-Based Engineered Composites for Sorptive Decontamination of Water: A Review. Chem. Eng. J. 2019;372:536–550. doi: 10.1016/j.cej.2019.04.097. DOI

Wang D., Zhang W., Hao X., Zhou D. Transport of Biochar Particles in Saturated Granular Media: Effects of Pyrolysis Temperature and Particle Size. Environ. Sci. Technol. 2013;47:821–828. doi: 10.1021/es303794d. PubMed DOI

Gámiz B., Cox L., Hermosín M.C., Spokas K., Celis R. Assessing the Effect of Organoclays & Biochar on the Fate of Abscisic Acid in Soil. J. Agric. Food Chem. 2017;65:29–38. PubMed

Liu T., Gao B., Fang J., Wang B., Cao X. Biochar-Supported Carbon Nanotube and Graphene Oxide Nanocomposites for Pb(II) and Cd(II) Removal. RSC Adv. 2016;6:24314–24319. doi: 10.1039/C6RA01895E. DOI

Song Q., Yang B., Wang H., Xu S., Cao Y. Effective Removal of Copper (II) and Cadmium (II) by Adsorbent Prepared from Chitosan-Modified Magnetic Biochar. J. Residuals Sci. Technol. 2016;13:197–205. doi: 10.12783/issn.1544-8053/13/3/3. PubMed DOI

Wu P., Wang Z., Bhatnagar A., Jeyakumar P., Wang H., Wang Y., Li X. Microorganisms-Carbonaceous Materials Immobilized Complexes: Synthesis, Adaptability and Environmental Applications. J. Hazard. Mater. 2021;416:125915. doi: 10.1016/j.jhazmat.2021.125915. DOI

Bolan S., Hou D., Wang L., Hale L., Egamberdieva D., Tammeorg P., Li R., Wang B., Xu J., Wang T., et al. The Potential of Biochar as a Microbial Carrier for Agricultural and Environmental Applications. Sci. Total Environ. 2023;886:163968. doi: 10.1016/j.scitotenv.2023.163968. PubMed DOI

Liu Z., Xu Z., Xu L., Buyong F., Chay T.C., Li Z., Cai Y., Hu B., Zhu Y., Wang X. Modified Biochar: Synthesis and Mechanism for Removal of Environmental Heavy Metals. Carbon Res. 2022;1:8. doi: 10.1007/s44246-022-00007-3. DOI

Chen H., Zhang J., Tang L., Su M., Tian D., Zhang L., Li Z., Hu S. Enhanced Pb Immobilization via the Combination of Biochar and Phosphate Solubilizing Bacteria. Environ. Int. 2019;127:395–401. doi: 10.1016/j.envint.2019.03.068. PubMed DOI

Wei T., Gao H., An F., Ma X., Hua L., Guo J. Performance of Heavy Metal-Immobilizing Bacteria Combined with Biochar on Remediation of Cadmium and Lead Co-Contaminated Soil. Environ. Geochem. Health. 2023;45:6009–6026. doi: 10.1007/s10653-023-01605-9. PubMed DOI

Deng M., Li K., Yan Y.J., Huang F., Peng D. Enhanced Cadmium Removal by Growing Bacillus Cereus RC-1 Immobilized on Different Magnetic Biochars through Simultaneous Adsorption and Bioaccumulation. Environ. Sci. Pollut. Res. 2022;29:18495–18507. doi: 10.1007/s11356-021-17125-x. PubMed DOI

Lopez-Tenllado F.J., Motta I.L., Hill J.M. Modification of Biochar with High-Energy Ball Milling: Development of Porosity and Surface Acid Functional Groups. Bioresour. Technol. Rep. 2021;15:100704. doi: 10.1016/j.biteb.2021.100704. DOI

Xiao Y., Lyu H., Tang J., Wang K., Sun H. Effects of Ball Milling on the Photochemistry of Biochar: Enrofloxacin Degradation and Possible Mechanisms. Chem. Eng. J. 2020;384:123311. doi: 10.1016/j.cej.2019.123311. DOI

Li F., Wan Y., Chen J., Hu X., Tsang D.C.W., Wang H., Gao B. Novel Ball-Milled Biochar-Vermiculite Nanocomposites Effectively Adsorb Aqueous As(Ⅴ) Chemosphere. 2020;260:127566. doi: 10.1016/j.chemosphere.2020.127566. PubMed DOI PMC

Bardestani R., Kaliaguine S. Steam Activation and Mild Air Oxidation of Vacuum Pyrolysis Biochar. Biomass Bioenergy. 2018;108:101–112. doi: 10.1016/j.biombioe.2017.10.011. DOI

Zhang J., Cui Y., Zhang T., Hu Q., Wah Tong Y., He Y., Dai Y., Wang C.H., Peng Y. Food Waste Treating by Biochar-Assisted High-Solid Anaerobic Digestion Coupled with Steam Gasification: Enhanced Bioenergy Generation and Porous Biochar Production. Bioresour. Technol. 2021;331:125051. doi: 10.1016/j.biortech.2021.125051. PubMed DOI

Shi D., Yek P.N.Y., Ge S., Shi Y., Liew R.K., Peng W., Sonne C., Tabatabaei M., Aghbashlo M., Lam S.S. Production of Highly Porous Biochar via Microwave Physiochemical Activation for Dechlorination in Water Treatment. Chemosphere. 2022;309:136624. doi: 10.1016/j.chemosphere.2022.136624. PubMed DOI

Wan X., Li C., Parikh S.J. Simultaneous Removal of Arsenic, Cadmium, and Lead from Soil by Iron-Modified Magnetic Biochar. Environ. Pollut. 2020;261:114157. doi: 10.1016/j.envpol.2020.114157. PubMed DOI

Yang Y., Phuong Nguyen T.M., Van H.T., Nguyen Q.T., Nguyen T.H., Lien Nguyen T.B., Hoang L.P., Van Thanh D., Nguyen T.V., Nguyen V.Q., et al. ZnO Nanoparticles Loaded Rice Husk Biochar as an Effective Adsorbent for Removing Reactive Red 24 from Aqueous Solution. Mater. Sci. Semicond. Process. 2022;150:106960. doi: 10.1016/j.mssp.2022.106960. DOI

Shin J., Lee Y.G., Lee S.H., Kim S., Ochir D., Park Y., Kim J., Chon K. Single and Competitive Adsorptions of Micropollutants Using Pristine and Alkali-Modified Biochars from Spent Coffee Grounds. J. Hazard. Mater. 2020;400:123102. doi: 10.1016/j.jhazmat.2020.123102. PubMed DOI

Chen M., Wang F., Zhang D.-L., Yi W.-M., Liu Y. Effects of Acid Modification on the Structure and Adsorption NH4+-N Properties of Biochar. Renew. Energy. 2021;169:1343–1350. doi: 10.1016/j.renene.2021.01.098. DOI

Gholami L., Rahimi G. Efficiency of CH4N2S−modified Biochar Derived from Potato Peel on the Adsorption and Fractionation of Cadmium, Zinc and Copper in Contaminated Acidic Soil. Environ. Nanotechnol. Monit. Manag. 2021;16:100468. doi: 10.1016/j.enmm.2021.100468. DOI

Lu Z., Zhang H., Shahab A., Zhang K., Zeng H., Bacha A.U.R., Nabi I., Ullah H. Comparative Study on Characterization and Adsorption Properties of Phosphoric Acid Activated Biochar and Nitrogen-Containing Modified Biochar Employing Eucalyptus as a Precursor. J. Clean. Prod. 2021;303:27046. doi: 10.1016/j.jclepro.2021.127046. DOI

Yazdani M.R., Duimovich N., Tiraferri A., Laurell P., Borghei M., Zimmerman J.B., Vahala R. Tailored Mesoporous Biochar Sorbents from Pinecone Biomass for the Adsorption of Natural Organic Matter from Lake Water. J. Mol. Liq. 2019;291:111248. doi: 10.1016/j.molliq.2019.111248. DOI

Yin Z., Xu S., Liu S., Xu S., Li J., Zhang Y. A Novel Magnetic Biochar Prepared by K2FeO4-Promoted Oxidative Pyrolysis of Pomelo Peel for Adsorption of Hexavalent Chromium. Bioresour. Technol. 2020;300:122680. doi: 10.1016/j.biortech.2019.122680. PubMed DOI

Yi Y., Tu G., Zhao D., Tsang P.E., Fang Z. Key Role of FeO in the Reduction of Cr(VI) by Magnetic Biochar Synthesised Using Steel Pickling Waste Liquor and Sugarcane Bagasse. J. Clean. Prod. 2020;245:118886. doi: 10.1016/j.jclepro.2019.118886. DOI

Ke W., Liu Z., Zhu F., Xie Y., Hartley W., Li X., Wu H., Xue S. Remediation Potential of Magnetic Biochar in Lead Smelting Sites: Insight from the Complexation of Dissolved Organic Matter with Potentially Toxic Elements. J. Environ. Manag. 2023;344:118556. doi: 10.1016/j.jenvman.2023.118556. PubMed DOI

Diao Y., Zhou L., Ji M., Wang X., Dan Y., Sang W. Immobilization of Cd and Pb in Soil Facilitated by Magnetic Biochar: Metal Speciation and Microbial Community Evolution. Environ. Sci. Pollut. Res. 2022;29:71871–71881. doi: 10.1007/s11356-022-20750-9. PubMed DOI

Lu H.P., Li Z.A., Gascó G., Méndez A., Shen Y., Paz-Ferreiro J. Use of Magnetic Biochars for the Immobilization of Heavy Metals in a Multi-Contaminated Soil. Sci. Total Environ. 2018;622–623:892–899. doi: 10.1016/j.scitotenv.2017.12.056. PubMed DOI

Wen E., Yang X., Chen H., Shaheen S.M., Sarkar B., Xu S., Song H., Liang Y., Rinklebe J., Hou D., et al. Iron-Modified Biochar and Water Management Regime-Induced Changes in Plant Growth, Enzyme Activities, and Phytoavailability of Arsenic, Cadmium and Lead in a Paddy Soil. J. Hazard. Mater. 2021;407:124344. doi: 10.1016/j.jhazmat.2020.124344. PubMed DOI

Yin Z., Liu Y., Liu S., Jiang L., Tan X., Zeng G., Li M., Liu S., Tian S., Fang Y. Activated Magnetic Biochar by One-Step Synthesis: Enhanced Adsorption and Coadsorption for 17β-Estradiol and Copper. Sci. Total Environ. 2018;639:1530–1542. doi: 10.1016/j.scitotenv.2018.05.130. PubMed DOI

Yu B., Li D., Wang Y., He H., Li H., Chen G. The Compound Effects of Biochar and Iron on Watercress in a Cd/Pb–Contaminated Soil. Environ. Sci. Pollut. Res. 2020;27:6312–6325. doi: 10.1007/s11356-019-07353-7. PubMed DOI

Medha I., Chandra S., Vanapalli K.R., Samal B., Bhattacharya J., Das B.K. (3-Aminopropyl)Triethoxysilane and Iron Rice Straw Biochar Composites for the Sorption of Cr (VI) and Zn (II) Using the Extract of Heavy Metals Contaminated Soil. Sci. Total Environ. 2021;771:144764. doi: 10.1016/j.scitotenv.2020.144764. PubMed DOI

Su H., Fang Z., Tsang P.E., Zheng L., Cheng W., Fang J., Zhao D. Remediation of Hexavalent Chromium Contaminated Soil by Biochar-Supported Zero-Valent Iron Nanoparticles. J. Hazard. Mater. 2016;318:533–540. doi: 10.1016/j.jhazmat.2016.07.039. PubMed DOI

Xiao J., Li X., Cao Y., Chen G. Does Micro/Nano Biochar Always Good to Phytoremediation? A Case Study from Multiple Metals Contaminated Acidic Soil Using Salix Jiangsuensis “172”. Carbon Res. 2023;2:21. doi: 10.1007/s44246-023-00053-5. DOI

Zhang P., Xue B., Jiao L., Meng X., Zhang L., Li B., Sun H. Preparation of Ball-Milled Phosphorus-Loaded Biochar and Its Highly Effective Remediation for Cd- and Pb-Contaminated Alkaline Soil. Sci. Total Environ. 2022;813:152648. doi: 10.1016/j.scitotenv.2021.152648. PubMed DOI

Zhou N., Wang Y., Huang L., Yu J., Chen H., Tang J., Xu F., Lu X., Zhong M.-E., Zhou Z. In Situ Modification Provided by a Novel Wet Pyrolysis System to Enhance Surface Properties of Biochar for Lead Immobilization. Colloids Surf. A Physicochem. Eng. Asp. 2019;570:39–47. doi: 10.1016/j.colsurfa.2019.03.012. DOI

Liu H., Xu F., Xie Y., Wang C., Zhang A., Li L., Xu H. Effect of Modified Coconut Shell Biochar on Availability of Heavy Metals and Biochemical Characteristics of Soil in Multiple Heavy Metals Contaminated Soil. Sci. Total Environ. 2018;645:702–709. doi: 10.1016/j.scitotenv.2018.07.115. PubMed DOI

Dianat Maharlouei Z., Fekri M., Mahmoodabadi M., Saljooqi A., Hejazi M. Chromium Desorption Kinetics Influenced by the Rice Husk and Almond Soft Husk Modified Biochar in a Calcareous Soil. Arab. J. Geosci. 2021;14:38. doi: 10.1007/s12517-020-06269-8. DOI

Ma J., Hua Z., Noreen S., Malik Z., Riaz M., Kamran M., Ali S., Elshikh M.S., Chen F. Chemical and Mechanical Coating of Sulfur on Baby Corn Biochar and Their Role in Soil Pb Availability, Uptake, and Growth of Tomato under Pb Contamination. Environ. Pollut. 2023;338:122654. doi: 10.1016/j.envpol.2023.122654. PubMed DOI

O’Connor D., Peng T., Li G., Wang S., Duan L., Mulder J., Cornelissen G., Cheng Z., Yang S., Hou D. Sulfur-Modified Rice Husk Biochar: A Green Method for the Remediation of Mercury Contaminated Soil. Sci. Total Environ. 2018;621:819–826. doi: 10.1016/j.scitotenv.2017.11.213. PubMed DOI

Cui H., Zhang X., Wu Q., Zhang S., Xu L., Zhou J., Zheng X., Zhou J. Hematite Enhances the Immobilization of Copper, Cadmium and Phosphorus in Soil Amended with Hydroxyapatite under Flooded Conditions. Sci. Total Environ. 2020;708:134590. doi: 10.1016/j.scitotenv.2019.134590. PubMed DOI

Netherway P., Reichman S.M., Laidlaw M., Scheckel K., Pingitore N., Gascó G., Méndez A., Surapaneni A., Paz-Ferreiro J. Phosphorus-Rich Biochars Can Transform Lead in an Urban Contaminated Soil. J. Environ. Qual. 2019;48:1091–1099. doi: 10.2134/jeq2018.09.0324. PubMed DOI

Yang X., Pan H., Shaheen S.M., Wang H., Rinklebe J. Immobilization of Cadmium and Lead Using Phosphorus-Rich Animal-Derived and Iron-Modified Plant-Derived Biochars under Dynamic Redox Conditions in a Paddy Soil. Environ. Int. 2021;156:106628. doi: 10.1016/j.envint.2021.106628. PubMed DOI

Ning K., Gong K., Chen H., Cui Q., Xin C., Tong X., Qiu J., Zheng S. Lead Stabilization in Soil Using P-Modified Biochars Derived from Kitchen Waste. Environ. Technol. Innov. 2022;28:102953. doi: 10.1016/j.eti.2022.102953. DOI

Sha H., Li J., Wang L., Nong H., Wang G., Zeng T. Preparation of Phosphorus-Modified Biochar for the Immobilization of Heavy Metals in Typical Lead-Zinc Contaminated Mining Soil: Performance, Mechanism and Microbial Community. Environ. Res. 2023;218:114769. doi: 10.1016/j.envres.2022.114769. PubMed DOI

An Q., Zhu S., Li Z., Deng S., Zhao B., Meng F., Jin N., Ren X. Sorption and Transport of Mn2+ in Soil Amended with Alkali-Modified Pomelo Biochar. Environ. Sci. Pollut. Res. 2021;28:56552–56564. doi: 10.1007/s11356-021-14637-4. PubMed DOI

Zhong M., Li W., Jiang M., Wang J., Shi X., Song J., Zhang W., Wang H., Cui J. Improving the Ability of Straw Biochar to Remediate Cd Contaminated Soil: KOH Enhanced the Modification of K3PO4 and Urea on Biochar. Ecotoxicol. Environ. Saf. 2023;262:115317. doi: 10.1016/j.ecoenv.2023.115317. PubMed DOI

Li P., Hu M., Suo J., Xie Y., Hu W., Wang X., Wang Y., Zhang Y. Enhanced Cr(VI) Removal by Waste Biomass Derived Nitrogen/Oxygen Co-Doped Microporous Biocarbon. Environ. Sci. Pollut. Res. 2020;27:5433–5445. doi: 10.1007/s11356-019-07330-0. PubMed DOI

Tian X., Liu M., Iqbal K., Ye W., Chang Y. Facile Synthesis of Nitrogen-Doped Carbon Coated Fe3O4/Pd Nanoparticles as a High-Performance Catalyst for Cr (VI) Reduction. J. Alloys Compd. 2020;826:154059. doi: 10.1016/j.jallcom.2020.154059. DOI

Ramola S., Belwal T., Li C.J., Wang Y.Y., Lu H.H., Yang S.M., Zhou C.H. Improved Lead Removal from Aqueous Solution Using Novel Porous Bentonite—And Calcite-Biochar Composite. Sci. Total Environ. 2020;709:136171. doi: 10.1016/j.scitotenv.2019.136171. PubMed DOI

Xie L., Chen Q., Liu Y., Ma Q., Zhang J., Tang C., Duan G., Lin A., Zhang T., Li S. Enhanced Remediation of Cr(VI)-Contaminated Soil by Modified Zero-Valent Iron with Oxalic Acid on Biochar. Sci. Total Environ. 2023;905:167399. doi: 10.1016/j.scitotenv.2023.167399. PubMed DOI

Herath I., Zhao F.J., Bundschuh J., Wang P., Wang J., Ok Y.S., Palansooriya K.N., Vithanage M. Microbe Mediated Immobilization of Arsenic in the Rice Rhizosphere after Incorporation of Silica Impregnated Biochar Composites. J. Hazard. Mater. 2020;398:123096. doi: 10.1016/j.jhazmat.2020.123096. PubMed DOI

Liu M., Sun F., Lv Y., Xu Y., Li M., Wang Y., Yin X., Jiang H. Remediation of Arsenic-Contaminated Soil by Nano-Zirconia Modified Biochar. Environ. Sci. Pollut. Res. 2021;28:68792–68803. doi: 10.1007/s11356-021-15362-8. PubMed DOI

Chuaphasuk C., Prapagdee B. Effects of Biochar-Immobilized Bacteria on Phytoremediation of Cadmium-Polluted Soil. Environ. Sci. Pollut. Res. 2019;26:23679–23688. doi: 10.1007/s11356-019-05661-6. PubMed DOI

Xu M., Ma J., Zhang X.H., Yang G., Long L.L., Chen C., Song C., Wu J., Gao P., Guan D.X. Biochar-Bacteria Partnership Based on Microbially Induced Calcite Precipitation Improves Cd Immobilization and Soil Function. Biochar. 2023;5:20. doi: 10.1007/s42773-023-00222-0. DOI

Hafeez A., Pan T., Tian J., Cai K. Modified Biochars and Their Effects on Soil Quality: A Review. Environments. 2022;9:60. doi: 10.3390/environments9050060. DOI

Chen M., Wang D., Yang F., Xu X., Xu N., Cao X. Transport and Retention of Biochar Nanoparticles in a Paddy Soil under Environmentally-Relevant Solution Chemistry Conditions. Environ. Pollut. 2017;230:540–549. doi: 10.1016/j.envpol.2017.06.101. PubMed DOI

Ye J., Liao W., Zhang P., Li J., Nabi M., Wang S., Cai Y., Li F. Fe1-XS/Biochar Combined with Thiobacillus Enhancing Lead Phytoavailability in Contaminated Soil: Preparation of Biochar, Enrichment of Thiobacillus and Their Function on Soil Lead. Environ. Pollut. 2020;267:115447. doi: 10.1016/j.envpol.2020.115447. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...