Learning Latent Profiles via Cognitive Growth Charting in Psychosis: Design and Rationale for the PRECOGNITION Project
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
40386470
PubMed Central
PMC12084834
DOI
10.1093/schizbullopen/sgaf007
PII: sgaf007
Knihovny.cz E-zdroje
- Klíčová slova
- cognition, data, functional outcomes, harmonization, normative models, psychosis,
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND HYPOTHESIS: Cognitive impairments are a core feature of psychosis that are often evident before illness onset and have substantial impact on both clinical and real-world functional outcomes. Therefore, these are an excellent target for stratification and early detection in order to facilitate early intervention. While many studies have aimed to characterize the effects of cognition at the group level and others have aimed to detect individual differences by referencing subjects against existing norms, these studies have limited generalizability across clinical populations, demographic backgrounds, and instruments and do not fully account for the interindividual heterogeneity inherent in psychosis. STUDY DESIGN: Here, we outline the rationale, design, and analysis plan for the PRECOGNITION project, which aims to address these challenges. STUDY RESULTS: This project is a collaboration between partners in 5 European countries. The project will not generate any primary data, but by leveraging existing datasets and combining these with novel analytic methods, it will produce multiple contributions including: (i) translating normative modeling approaches pioneered in brain imaging to psychosis data, to yield "cognitive growth charts" for longitudinal tracking and individual prediction; (ii) developing machine learning models for harmonizing and stratifying cohorts on the basis of these models; and (iii) providing integrated next-generation norms, having broad sociodemographic coverage including different languages and distinct norms for individuals with psychosis and unaffected individuals. CONCLUSIONS: This study will enable precision stratification of psychosis cohorts and furnish predictions for a broad range of functional outcome measures. It will be guided throughout by lived experience experts.
Department of Psychology Durham University Durham DH1 3LE United Kingdom
Department of Psychology University of Oslo N 0851 Oslo Norway
National Institute of Mental Health 250 67 Klecany Czech Republic
Psychosis Research Unit Greater Manchester Mental Health NHS Trust Manchester M25 3BL United Kingdom
School of Medicine Keele University Keele ST5 5BG United Kingdom
Zobrazit více v PubMed
Keefe RSE, Fenton WS.. How should DSM-V criteria for schizophrenia include cognitive impairment? Schizophr Bull. 2007;33:912–920. https://doi.org/10.1093/schbul/sbm046 PubMed DOI PMC
Mesholam-Gately RI, Giuliano AJ, Goff KP, Faraone SV, Seidman LJ.. Neurocognition in first-episode schizophrenia: a meta-analytic review. Neuropsychology. 2009;23:315–336. https://doi.org/10.1037/a0014708 PubMed DOI
Lin A, Wood SJ, Nelson B, et al.Neurocognitive predictors of functional outcome two to 13 years after identification as ultra-high risk for psychosis. Schizophr Res. 2011;132:1–7. https://doi.org/10.1016/j.schres.2011.06.014 PubMed DOI
Orygen. Cognitive Impairment in Psychosis: Landscape Report. https://www.orygen.org.au/Research/Research-Areas/First-Episode-Psychosis/Resources/Cognitive-Impairment-in-Psychosis-Landscape-Report
Barch DM, Sheffield JM.. Cognitive impairments in psychotic disorders: common mechanisms and measurement. World Psychiatry. 2014;13:224–232. https://doi.org/10.1002/wps.20145 PubMed DOI PMC
Bowie CR, Reichenberg A, Patterson TL, Heaton RK, Harvey PD.. Determinants of real-world functional performance in schizophrenia subjects: correlations with cognition, functional capacity, and symptoms. Am J Psychiatry. 2006;163:418–425. https://doi.org/10.1176/appi.ajp.163.3.418 PubMed DOI
Cicchetti D, Rogosch FA.. Equifinality and multifinality in developmental psychopathology. Dev Psychopathol. 1996;8:597–600. https://doi.org/10.1017/S0954579400007318 DOI
Cannon TD, Keller MC.. Endophenotypes in the genetic analyses of mental disorders. Annu Rev Clin Psychol. 2006;2:267–290. https://doi.org/10.1146/annurev.clinpsy.2.022305.095232 PubMed DOI
Insel T, Cuthbert B, Garvey M, et al.Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry. 2010;167:748–751. https://doi.org/10.1176/appi.ajp.2010.09091379 PubMed DOI
Insel TR, Cuthbert BN.. Brain disorders? Precisely. Science. 2015;348:499–500. https://doi.org/10.1126/science.aab2358 PubMed DOI
Schumann G, Binder EB, Holte A, et al.Stratified medicine for mental disorders. Eur Neuropsychopharmacol. 2014;24:5–50. https://doi.org/10.1016/j.euroneuro.2013.09.010 PubMed DOI
Foulkes L, Blakemore SJ.. Studying individual differences in human adolescent brain development. Nat Neurosci. 2018;21:315–323. https://doi.org/10.1038/s41593-018-0078-4 PubMed DOI
Seghier ML, Price CJ.. Interpreting and utilising intersubject variability in brain function. Trends Cogn Sci. 2018;22:517–530. https://doi.org/10.1016/j.tics.2018.03.003 PubMed DOI PMC
Carruthers SP, Van Rheenen TE, Gurvich C, Sumner PJ, Rossell SL.. Characterising the structure of cognitive heterogeneity in schizophrenia spectrum disorders. A systematic review and narrative synthesis. Neurosci Biobehav Rev. 2019;107:252–278. https://doi.org/10.1016/j.neubiorev.2019.09.006 PubMed DOI
Farmer AE, McGuffin P, Spitznagel EL.. Heterogeneity in schizophrenia: a cluster-analytic approach. Psychiatry Res. 1983;8:1–12. https://doi.org/10.1016/0165-1781(83)90132-4 PubMed DOI
Murray V, McKee I, Miller PM, et al.Dimensions and classes of psychosis in a population cohort: a four-class, four-dimension model of schizophrenia and affective psychoses. Psychol Med. 2005;35:499–510. https://doi.org/10.1017/s0033291704003745 PubMed DOI
Clementz BA, Sweeney JA, Hamm JP, et al.Identification of distinct psychosis biotypes using brain-based biomarkers. Am J Psychiatry. 2016;173:373–384. https://doi.org/10.1176/appi.ajp.2015.14091200 PubMed DOI PMC
Miskowiak KW, Kjærstad HL, Lemvigh CK, et al.Neurocognitive subgroups among newly diagnosed patients with schizophrenia spectrum or bipolar disorders: a hierarchical cluster analysis. J Psychiatr Res. 2023;163:278–287. https://doi.org/10.1016/j.jpsychires.2023.05.025 PubMed DOI
Kristensen TD, Mager FM, Ambrosen KS, et al.Cognitive profiles across the psychosis continuum. Psychiatry Res. 2024;342:116168. https://doi.org/10.1016/j.psychres.2024.116168 PubMed DOI
Ambrosen KS, Skjerbæk MW, Foldager J, et al.A machine-learning framework for robust and reliable prediction of short- and long-term treatment response in initially antipsychotic-naïve schizophrenia patients based on multimodal neuropsychiatric data. Transl Psychiatry. 2020;10:276. https://doi.org/10.1038/s41398-020-00962-8 PubMed DOI PMC
Marquand AF, Wolfers T, Mennes M, Buitelaar J, Beckmann CF.. Beyond lumping and splitting: a review of computational approaches for stratifying psychiatric disorders. Biol Psychiatry Cogn Neurosci Neuroimaging. 2016;1:433–447. https://doi.org/10.1016/j.bpsc.2016.04.002 PubMed DOI PMC
Liu Y, Hayes DN, Nobel A, Marron JS.. Statistical significance of clustering for high-dimension, low-sample size data. J Am Stat Assoc. 2008;103:1281–1293. https://doi.org/10.1198/016214508000000454 DOI
Haatveit B, Westlye LT, Vaskinn A, et al.Intra- and inter-individual cognitive variability in schizophrenia and bipolar spectrum disorder: an investigation across multiple cognitive domains. Schizophrenia (Heidelberg, Germany). 2023;9:89. https://doi.org/10.1038/s41537-023-00414-4 PubMed DOI PMC
Kjelkenes R, Wolfers T, Alnæs D, et al.Mapping normative trajectories of cognitive function and its relation to psychopathology symptoms and genetic risk in youth. Biol Psychiatry Glob Open Sci. 2022;3:S266717432200012X. https://doi.org/10.1016/j.bpsgos.2022.01.007 PubMed DOI PMC
Marquand AF, Kia SM, Zabihi M, Wolfers T, Buitelaar JK, Beckmann CF.. Conceptualizing mental disorders as deviations from normative functioning. Mol Psychiatry. 2019;24:1415–1424. https://doi.org/10.1038/s41380-019-0441-1 PubMed DOI PMC
Wolfers T, Doan NT, Kaufmann T, et al.Mapping the heterogeneous phenotype of schizophrenia and bipolar disorder using normative models. JAMA Psychiatry. 2018;75:1146–1155. https://doi.org/10.1001/jamapsychiatry.2018.2467 PubMed DOI PMC
Wolfers T, Rokicki J, Alnaes D, et al.Replicating extensive brain structural heterogeneity in individuals with schizophrenia and bipolar disorder. Hum Brain Mapp. 2021;42:2546–2555. https://doi.org/10.1002/hbm.25386 PubMed DOI PMC
Lv J, Di Biase M, Cash RFH, et al.Individual deviations from normative models of brain structure in a large cross-sectional schizophrenia cohort. Mol Psychiatry. 2021;26:3512–3523. https://doi.org/10.1038/s41380-020-00882-5 PubMed DOI PMC
Worker A, Berthert P, Lawrence AJ, et al.Extreme deviations from the normative model reveal cortical heterogeneity and associations with negative symptom severity in first-episode psychosis from the OPTiMiSE and GAP studies. Transl Psychiatry. 2023;13:373. https://doi.org/10.1038/s41398-023-02661-6 PubMed DOI PMC
Berthet P, Haatveit BC, Kjelkenes R, et al.A 10-year longitudinal study of brain cortical thickness in people with first-episode psychosis using normative models. Schizophr Bull. 2024;51:sbae107. https://doi.org/10.1093/schbul/sbae107 PubMed DOI PMC
Fusar‐Poli P, Estradé A, Stanghellini G, et al.The lived experience of psychosis: a bottom-up review co-written by experts by experience and academics. World Psychiatry. 2022;21:168–188. https://doi.org/10.1002/wps.20959 PubMed DOI PMC
Neidhart M, Kjelkenes R, Jansone K, et al.A protocol for data harmonization in large cohorts. Nature Mental Health. 2024;2:1134–1137. https://doi.org/10.1038/s44220-024-00315-0 DOI
Mitra R, McGough SF, Chakraborti T, et al.Learning from data with structured missingness. Nat Mach Intell. 2023;5:13–23. https://doi.org/10.1038/s42256-022-00596-z DOI
Kia SM, Huijsdens H, Rutherford S, et al.Closing the life-cycle of normative modeling using federated hierarchical Bayesian regression. PLoS One. 2022;17:e0278776. https://doi.org/10.1371/journal.pone.0278776 PubMed DOI PMC
De Boer AAA, Bayer JMM, Kia SM, et al.Non-Gaussian normative modelling with hierarchical Bayesian regression. Imaging Neurosci. 2024;2:1–36. https://doi.org/10.1162/imag_a_00132 DOI
Heaton RK, Avitable N, Grant I, Matthews CG.. Further crossvalidation of regression-based neuropsychological norms with an update for the Boston Naming Test. J Clin Exp Neuropsychol. 1999;21:572–582. https://doi.org/10.1076/jcen.21.4.572.882 PubMed DOI
Kern RS, Nuechterlein KH, Green MF, et al.The MATRICS Consensus Cognitive Battery, Part 2: co-norming and standardization. Am J Psychiatry. 2008;165:214–220. https://doi.org/10.1176/appi.ajp.2007.07010043 PubMed DOI
Borghi E, De Onis M, Garza C, et al.; WHO Multicentre Growth Reference Study Group. Construction of the World Health Organization child growth standards: selection of methods for attained growth curves. Stat Med. 2006;25:247–265. https://doi.org/10.1002/sim.2227 PubMed DOI
Cole TJ. Growth charts for both cross-sectional and longitudinal data. Stat Med. 1994;13:2477–2492. https://doi.org/10.1002/sim.4780132311 PubMed DOI
Rehák Bučková B, Fraza C, Rehák R, et al.Using normative models pre-trained on cross-sectional data to evaluate longitudinal changes in neuroimaging data. Published online June 9, 2023. https://doi.org/10.1101/2023.06.09.544217 PubMed DOI PMC
Cole TJ. 3-in-1 weight-monitoring chart. Lancet (London, England). 1997;349:102–103. https://doi.org/10.1016/S0140-6736(05)60886-0 PubMed DOI
Van Buuren S. Evaluation and prediction of individual growth trajectories. Ann Hum Biol. 2023;50:247–257. https://doi.org/10.1080/03014460.2023.2190619 PubMed DOI
Holz NE, Floris DL, Llera A, et al.Age-related brain deviations and aggression. Psychol Med. 2022;53:4012–4021. https://doi.org/10.1017/S003329172200068X PubMed DOI PMC
Wolfers T, Arenas AL, Onnink AMH, et al.Refinement by integration: aggregated effects of multimodal imaging markers on adult ADHD. J Psychiatry Neurosci. 2017;42:386–394. https://doi.org/10.1503/jpn.160240 PubMed DOI PMC
Doan NT, Kaufmann T, Bettella F, et al.Distinct multivariate brain morphological patterns and their added predictive value with cognitive and polygenic risk scores in mental disorders. NeuroImage Clin. 2017;15:719–731. https://doi.org/10.1016/j.nicl.2017.06.014 PubMed DOI PMC
Rutherford S, Fraza C, Dinga R, et al.Charting brain growth and aging at high spatial precision. eLife. 2022;11:e72904. https://doi.org/10.7554/eLife.72904 PubMed DOI PMC
Rutherford S, Barkema P, Tso IF, et al.Evidence for embracing normative modeling. eLife. 2023;12:e85082. https://doi.org/10.7554/eLife.85082 PubMed DOI PMC
Barkema P, Rutherford S, Lee HC, et al.Predictive Clinical Neuroscience Portal (PCNportal): instant online access to research-grade normative models for clinical neuroscientists. Wellcome Open Res. 2023;8:326. https://doi.org/10.12688/wellcomeopenres.19591.2 PubMed DOI PMC
Calkins ME, Merikangas KR, Moore TM, et al.The Philadelphia Neurodevelopmental Cohort: constructing a deep phenotyping collaborative. J Child Psychol Psychiatry. 2015;56:1356–1369. https://doi.org/10.1111/jcpp.12416 PubMed DOI PMC
Casey BJ, Cannonier T, Conley MI, et al.; ABCD Imaging Acquisition Workgroup. The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites. Dev Cogn Neurosci. 2018;32:43–54. https://doi.org/10.1016/j.dcn.2018.03.001 PubMed DOI PMC
Volkow ND, Koob GF, Croyle RT, et al.The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev Cogn Neurosci. 2018;32:4–7. https://doi.org/10.1016/j.dcn.2017.10.002 PubMed DOI PMC
Magnus P, Irgens LM, Haug K, Nystad W, Skjærven R, Stoltenberg C.. Cohort profile: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol. 2006;35:1146–1150. https://doi.org/10.1093/ije/dyl170 PubMed DOI
Fraser A, Macdonald-Wallis C, Tilling K, et al.Cohort profile: the Avon Longitudinal Study of Parents and Children: ALSPAC mothers cohort. Int J Epidemiol. 2013;42:97–110. https://doi.org/10.1093/ije/dys066 PubMed DOI PMC
Barch DM, Burgess GC, Harms MP, et al.; WU-Minn HCP Consortium. Function in the Human Connectome: task-fMRI and individual differences in behavior. Neuroimage. 2013;80:169–189. https://doi.org/10.1016/j.neuroimage.2013.05.033 PubMed DOI PMC
Hintz F, Dijkhuis M, van’t Hoff V, McQueen JM, Meyer AS.. A behavioural dataset for studying individual differences in language skills. Sci Data. 2020;7:429. https://doi.org/10.1038/s41597-020-00758-x PubMed DOI PMC
Aarts E, Akkerman A, Altgassen M, et al.; Healthy Brain Study Consortium. Protocol of the Healthy Brain Study: an accessible resource for understanding the human brain and how it dynamically and individually operates in its bio-social context. PLoS One. 2021;16:e0260952. https://doi.org/10.1371/journal.pone.0260952 PubMed DOI PMC
Shafto MA, Tyler LK, Dixon M, et al.; Cam-CAN. The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study protocol: a cross-sectional, lifespan, multidisciplinary examination of healthy cognitive ageing. BMC Neurol. 2014;14:204. https://doi.org/10.1186/s12883-014-0204-1 PubMed DOI PMC
Voldsbekk I, Kjelkenes R, Frogner ER, Westlye LT, Alnaes D.. Testing the sensitivity of diagnosis-derived patterns in functional brain networks to symptom burden in a Norwegian youth sample. Hum Brain Mapp. 2024;45:e26631. https://doi.org/10.1002/hbm.26631 PubMed DOI PMC
Moskal V, Voldsbekk I, Leonardsen EH, Holthe LCF, Kjelkenes R, Westlye LT.. Cognitive age prediction and psychological distress in adolescence. Published onlineMay 21, 2024. https://doi.org/10.31234/osf.io/egwtu DOI
Millgate E, Kravariti E, Egerton A, et al.Cross-sectional study comparing cognitive function in treatment responsive versus treatment non-responsive schizophrenia: evidence from the STRATA study. BMJ Open. 2021;11:e054160. https://doi.org/10.1136/bmjopen-2021-054160 PubMed DOI PMC
Morgan C, Lappin J, Heslin M, et al.Reappraising the long-term course and outcome of psychotic disorders: the AESOP-10 study. Psychol Med. 2014;44:2713–2726. https://doi.org/10.1017/S0033291714000282 PubMed DOI PMC
Murray RM, Mondelli V, Stilo SA, et al.The influence of risk factors on the onset and outcome of psychosis: what we learned from the GAP study. Schizophr Res. 2020;225:63–68. https://doi.org/10.1016/j.schres.2020.01.011 PubMed DOI
Fagerlund B, Pantelis C, Jepsen JRM, et al.Differential effects of age at illness onset on verbal memory functions in antipsychotic-naïve schizophrenia patients aged 12-43 years. Psychol Med. 2021;51:1570–1580. https://doi.org/10.1017/S0033291720000409 PubMed DOI
Klærke LR, Baandrup L, Fagerlund B, et al.Diagnostic stability and long-term symptomatic and functional outcomes in first-episode antipsychotic-naïve patients with schizophrenia. Eur Psychiatry. 2019;62:130–137. https://doi.org/10.1016/j.eurpsy.2019.07.001 PubMed DOI
Nielsen MO, Kristensen TD, Borup Bojesen K, Glenthøj BY, Lemvigh CK, Ebdrup BH.. Differential effects of aripiprazole and amisulpride on negative and cognitive symptoms in patients with first-episode psychoses. Front Psychiatry. 2022;13:834333. https://doi.org/10.3389/fpsyt.2022.834333 PubMed DOI PMC
Glenthøj LB, Mariegaard LS, Fagerlund B, et al.Cognitive remediation plus standard treatment versus standard treatment alone for individuals at ultra-high risk of developing psychosis: results of the FOCUS randomised clinical trial. Schizophr Res. 2020;224:151–158. https://doi.org/10.1016/j.schres.2020.08.016 PubMed DOI
Nuechterlein KH, Green MF, Kern RS, et al.The MATRICS Consensus Cognitive Battery, part 1: test selection, reliability, and validity. Am J Psychiatry. 2008;165:203–213. https://doi.org/10.1176/appi.ajp.2007.07010042 PubMed DOI
Wechsler D. Wechsler Adult Intelligence Scale. 3rd ed. Published online February 11, 2019. https://doi.org/10.1037/t49755-000 DOI
Keefe RSE, Goldberg TE, Harvey PD, Gold JM, Poe MP, Coughenour L.. The Brief Assessment of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard neurocognitive battery. Schizophr Res. 2004;68:283–297. https://doi.org/10.1016/j.schres.2003.09.011 PubMed DOI
Nelson, Hazel E. National Adult Reading Test (NART). Nfer-Nelson Windsor; 1991.
Delis DC, Kaplan E, Kramer JH.. Delis-Kaplan Executive Function System. Published online October 8, 2012. https://doi.org/10.1037/t15082-000 DOI
Robbins TW, James M, Owen AM, Sahakian BJ, McInnes L, Rabbitt P.. Cambridge Neuropsychological Test Automated Battery (CANTAB): a factor analytic study of a large sample of normal elderly volunteers. Dementia (Basel, Switzerland). 1994;5:266–281. https://doi.org/10.1159/000106735 PubMed DOI
Gershon RC, Wagster MV, Hendrie HC, Fox NA, Cook KF, Nowinski CJ.. NIH toolbox for assessment of neurological and behavioral function. Neurology. 2013;80(Supplement 3):S2–S6. https://doi.org/10.1212/WNL.0b013e3182872e5f PubMed DOI PMC
Richard G, Kolskår K, Sanders AM, et al.Assessing distinct patterns of cognitive aging using tissue-specific brain age prediction based on diffusion tensor imaging and brain morphometry. PeerJ. 2018;6:e5908. https://doi.org/10.7717/peerj.5908 PubMed DOI PMC
Askeland RB, Hannigan LJ, Ask H, et al.Early manifestations of genetic risk for neurodevelopmental disorders. J Child Psychol Psychiatry. 2022;63:810–819. https://doi.org/10.1111/jcpp.13528 PubMed DOI PMC
Kia SM, Huijsdens H, Dinga R, et al. Hierarchical Bayesian Regression for Multi-Site Normative Modeling of Neuroimaging Data. ArXiv200512055 Cs Stat. Published online May 25, 2020. Accessed August 2, 2021. http://arxiv.org/abs/2005.12055
Ruiz FJR, Valera I, Blanco C, Perez-Cruz F.. Bayesian nonparametric comorbidity analysis of psychiatric disorder s. Published online 2014. https://doi.org/10.48550/ARXIV.1401.7620 DOI
Delis DC, Kramer JH, Kaplan E, Ober BA.. California Verbal Learning Test. 2nd ed. Published online November 14, 2016. https://doi.org/10.1037/t15072-000 DOI
Benedict RHB, Schretlen D, Groninger L, Brandt J.. Hopkins Verbal Learning Test. Revised. Published online June 10, 2013. https://doi.org/10.1037/t10851-000 DOI
Braun V, Clarke V.. Using thematic analysis in psychology. Qual Res Psychol. 2006;3:77–101. https://doi.org/10.1191/1478088706qp063oa DOI
Diamond R, Waite F, Boylan AM, Hicks A, Kabir T, Freeman D.. Framework for understanding movement and physical activity in patients diagnosed with psychosis. BMJ Ment Health. 2024;27:e300878. https://doi.org/10.1136/bmjment-2023-300878 PubMed DOI PMC
Mahmood R, Wallace V, Wiles N, Kessler D, Button KS, Fairchild G.. The lived experience of withdrawal from Selective Serotonin Reuptake Inhibitor (SSRI) antidepressants: a qualitative interview study. Health Expect. 2024;27:e13966. https://doi.org/10.1111/hex.13966 PubMed DOI PMC
Clarkson C, Scott HR, Hegarty S, et al.“You get looked at like you’re failing”: a reflexive thematic analysis of experiences of mental health and wellbeing support for NHS staff. J Health Psychol. 2023;28:818–831. https://doi.org/10.1177/13591053221140255 PubMed DOI PMC
Byrne D. A worked example of Braun and Clarke’s approach to reflexive thematic analysis. Qual Quant. 2022;56:1391–1412. https://doi.org/10.1007/s11135-021-01182-y DOI
Rutherford S, Wolfers T, Fraza C, et al.To which reference class do you belong? Measuring racial fairness of reference classes with normative modeling. Published online 2024. https://doi.org/10.48550/ARXIV.2407.19114 DOI
MacIntyre MR, Cockerill RG, Mirza OF, Appel JM.. Ethical considerations for the use of artificial intelligence in medical decision-making capacity assessments. Psychiatry Res. 2023;328:115466. https://doi.org/10.1016/j.psychres.2023.115466 PubMed DOI