Factors influencing carrion communities are only partially consistent with those of deadwood necromass

. 2023 Feb ; 201 (2) : 537-547. [epub] 20230125

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36697878
Odkazy

PubMed 36697878
PubMed Central PMC9943954
DOI 10.1007/s00442-023-05327-8
PII: 10.1007/s00442-023-05327-8
Knihovny.cz E-zdroje

Research on decomposer communities has traditionally focused on plant litter or deadwood. Even though carrion forms highly nutrient-rich necromass that enhance ecosystem heterogeneity, the factors influencing saprophytic communities remain largely unknown. For deadwood, experiments have shown that different drivers determine beetles (i.e., decay stage, microclimate, and space), fungi (i.e., decay stage and tree species) and bacteria (decay stage only) assemblages. To test the hypothesis that similar factors also structure carrion communities, we sampled 29 carcasses exposed for 30 days that included Cervus elaphus (N = 6), Capreolus capreolus (N = 18), and Vulpes vulpes (N = 5) in a mountain forest throughout decomposition. Beetles were collected with pitfall traps, while microbial communities were characterized using amplicon sequencing. Assemblages were determined with a focus from rare to dominant species using Hill numbers. With increasing focus on dominant species, the relative importance of carcass identity on beetles and space on bacteria increased, while only succession and microclimate remained relevant for fungi. For beetle and bacteria with focus on dominant species, host identity was more important than microclimate, which is in marked contrast to deadwood. We conclude that factors influencing carrion saprophytic assemblages show some consistency, but also differences from those of deadwood assemblages, suggesting that short-lived carrion and long-lasting deadwood both provide a resource pulse with different adaptions in insects and microbes. As with deadwood, a high diversity of carcass species under multiple decay stages and different microclimates support a diverse decomposer community.

Zobrazit více v PubMed

Abarenkov K, Zirk A, Piirmann T, et al. Data from: UNITE QIIME release for Fungi. Version 04.02.2020. UNITE Community. 2020 doi: 10.15156/BIO/786385. DOI

Anderson GS, VanLaerhoven SL. Initial studies on insect succession on carrion in southwestern British Columbia. J Forensic Sci. 1996;41:617–625. doi: 10.1520/JFS13964J. PubMed DOI

Bajerlein D, Taberski D, Matuszewski S. Estimation of postmortem interval (PMI) based on empty puparia of Phormia regina (Meigen) (Diptera: Calliphoridae) and third larval stage of Necrodes littoralis (L.) (Coleoptera: Silphidae)—Advantages of using different PMI indicators. J Forensic Leg Med. 2018;55:95–98. doi: 10.1016/j.jflm.2018.02.008. PubMed DOI

Baldrian P. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol Rev. 2017;41:109–130. PubMed

Barton PS, Cunningham SA, Lindenmayer DB, Manning AD. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia. 2013;171:761–772. doi: 10.1007/s00442-012-2460-3. PubMed DOI

Bates ST, Ahrendt S, Bik HM, et al. Meeting report: fungal ITS workshop (October 2012) Stand Genomic Sci. 2013;8:118–123. doi: 10.4056/sigs.3737409. PubMed DOI PMC

Baz A, Cifrián B, Díaz-äranda LM, Martín-Vega D. The distribution of adult blow-flies (Diptera: Calliphoridae) along an altitudinal gradient in Central Spain. Ann Soc Entomol Fr. 2007;43:289–296. doi: 10.1080/00379271.2007.10697524. DOI

Benbow ME, Tomberlin JK, Tarone AM, editors. Carrion ecology, evolution, and their applications. Boca Raton: CRC Press; 2015.

Benbow ME, Barton PS, Ulyshen MD, et al. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol Monogr. 2019;89:e01331. doi: 10.1002/ecm.1331. DOI

Bokulich NA, Kaehler BD, Rideout JR, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6:1–17. doi: 10.1186/s40168-018-0470-z. PubMed DOI PMC

Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–857. doi: 10.1038/s41587-019-0209-9. PubMed DOI PMC

Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation. Ecology. 1992;73:1045–1055. doi: 10.2307/1940179. DOI

Bouget C, Brin A, Brustel H. Exploring the “last biotic frontier”: are temperate forest canopies special for saproxylic beetles? For Ecol Manage. 2011;261:211–220. doi: 10.1016/j.foreco.2010.10.007. DOI

Bump JK, Peterson RO, Vucetich JA. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology. 2009;90:3159–3167. doi: 10.1890/09-0292.1. PubMed DOI

Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–583. doi: 10.1038/nmeth.3869. PubMed DOI PMC

Campobasso CP, Di Vella G, Introna F. Factors affecting decomposition and Diptera colonization. Forensic Sci Int. 2001;120:18–27. doi: 10.1016/S0379-0738(01)00411-X. PubMed DOI

Caporaso JG, Lauber CL, Walters WA, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621–1624. doi: 10.1038/ismej.2012.8. PubMed DOI PMC

Carter DO, Tibbett M. Taphonomic mycota: fungi with forensic potential. J Forensic Sci. 2003;48:1–4. doi: 10.1520/JFS2002169. PubMed DOI

Carter DO, Tibbett M. Microbial decomposition of skeletal muscle tissue (Ovis aries) in a sandy loam soil at different temperatures. Soil Biol Biochem. 2006;38:1139–1145. doi: 10.1016/j.soilbio.2005.09.014. DOI

Catts EP, Goff ML. Forensic entomology in criminal investigations. Annu Rev Entomol. 1992;37:253–272. doi: 10.1146/annurev.en.37.010192.001345. PubMed DOI

Centeno N, Maldonado M, Oliva A. Seasonal patterns of arthropods occurring on sheltered and unsheltered pig carcasses in Buenos Aires Province (Argentina) Forensic Sci Int. 2002;126:63–70. doi: 10.1016/S0379-0738(02)00037-3. PubMed DOI

Chao A, Chiu C-H, Jost L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annu Rev Ecol Evol Syst. 2014;45:297–324. doi: 10.1146/annurev-ecolsys-120213-091540. DOI

Chiu C-H, Jost L, Chao A. Phylogenetic beta diversity, similarity, and differentiation measures based on Hill numbers. Ecol Monogr. 2014;84:21–44. doi: 10.1890/12-0960.1. DOI

Colinet H, Sinclair BJ, Vernon P, Renault D. Insects in fluctuating thermal environments. Annu Rev Entomol. 2015;60:123–140. doi: 10.1146/annurev-ento-010814-021017. PubMed DOI

Crippen TL, Benbow ME, Pechal JL. Microbial interactions during carrion decomposition. In: Benbow ME, Tomberlin JK, Tarone AM, editors. Carrion ecology, evolution, and their applications. Boca Raton: CRC Press; 2015. pp. 31–64.

Dawson BM, Wallman JF, Evans MJ, Barton PS. Is resource change a useful predictor of carrion insect succession on pigs and humans? J Med Entomol. 2021;58:2228–2235. doi: 10.1093/jme/tjab072. PubMed DOI

Dekeirsschieter J, Verheggen FJ, Haubruge E, Brostaux Y. Carrion beetles visiting pig carcasses during early spring in urban, forest and agricultural biotopes of Western Europe. J Insect Sci. 2011;11:73. doi: 10.1673/031.011.7301. PubMed DOI PMC

DeVault TL, Rhodes OE, Jr, Shivik JA. Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos. 2003;102:225–234. doi: 10.1034/j.1600-0706.2003.12378.x. DOI

DeVault TL, Brisbin IL, Jr, Rhodes OE., Jr Factors influencing the acquisition of rodent carrion by vertebrate scavengers and decomposers. Can J Zool. 2004;82:502–509. doi: 10.1139/z04-022. DOI

Dickson GC, Poulter RTM, Maas EW, et al. Marine bacterial succession as a potential indicator of postmortem submersion interval. Forensic Sci Int. 2011;209:1–10. doi: 10.1016/j.forsciint.2010.10.016. PubMed DOI

Ellison AM. Partitioning diversity. Ecology. 2010;91:1962–1963. doi: 10.1890/09-1692.1. PubMed DOI

Ercolini D, Russo F, Nasi A, et al. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl Environ Microbiol. 2009;75:1990–2001. doi: 10.1128/AEM.02762-08. PubMed DOI PMC

FAO . Global forest resources assessment update 2005: terms and definitions. Forest resources assessment programme. Working papers 83/E. Rome: FAO Food and Agriculture Organization; 2004.

Farwig N, Brandl R, Siemann S, et al. Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia. 2014;175:1291–1300. doi: 10.1007/s00442-014-2974-y. PubMed DOI

Fiedler A, Halbach M, Sinclair B, Benecke M. What is the edge of a forest? A diversity analysis of adult Diptera found on decomposing piglets inside and on the edge of a Western German woodland inspired by a courtroom question. Entomol Heute. 2008;20:173–191.

Frątczak K, Matuszewski S. Instar determination in forensically useful beetles Necrodes littoralis (Silphidae) and Creophilus maxillosus (Staphylinidae) Forensic Sci Int. 2014;241:20–26. doi: 10.1016/j.forsciint.2014.04.026. PubMed DOI

Fukiharu T, Yokoyama G, Oba T. Occurrence of Hebeloma vinosophyllum on the forest ground after decomposition of crow carcass. Mycoscience. 2000;41:401–402. doi: 10.1007/BF02463954. DOI

García-Palacios P, Maestre FT, Kattge J, Wall DH. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol Lett. 2013;16:1045–1053. doi: 10.1111/ele.12137. PubMed DOI PMC

Glynou K, Ali T, Buch A-K, et al. The local environment determines the assembly of root endophytic fungi at a continental scale. Environ Microbiol. 2016;18:2418–2434. doi: 10.1111/1462-2920.13112. PubMed DOI

Goff ML. Early post-mortem changes and stages of decomposition in exposed cadavers. Exp Appl Acarol. 2009;49:21–36. doi: 10.1007/s10493-009-9284-9. PubMed DOI

Haelewaters D, Vanpoucke S, Raes D, Krawczynski R. On carrion-associated beetles in the Sonian Forest (Belgium): observations on five deer carcasses. Bull Société R Belge D’entomologie. 2015;151:25–33.

Haslam TCF, Tibbett M. Soils of contrasting pH affect the decomposition of buried mammalian (Ovis aries) skeletal muscle tissue. J Forensic Sci. 2009;54:900–904. doi: 10.1111/j.1556-4029.2009.01070.x. PubMed DOI

Hill MO. Diversity and evenness: a unifying notation and its consequences. Ecology. 1973;54:427–432. doi: 10.2307/1934352. DOI

Hilton RN. The ghoul fungus, Hebeloma sp. ined. Trans Mycol Soc Jpn. 1978;19:418.

Hu Z, Xu C, McDowell NG, et al. Linking microbial community composition to C loss rates during wood decomposition. Soil Biol Biochem. 2017;104:108–116. doi: 10.1016/j.soilbio.2016.10.017. DOI

Ihrmark K, Bödeker I, Cruz-Martinez K, et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol. 2012;82:666–677. doi: 10.1111/j.1574-6941.2012.01437.x. PubMed DOI

Keuskamp JA, Dingemans BJJ, Lehtinen T, et al. Tea bag index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol. 2013;4:1070–1075. doi: 10.1111/2041-210X.12097. DOI

Komonen A, Müller J. Dispersal ecology of deadwood organisms and connectivity conservation. Conserv Biol. 2018;32:535–545. doi: 10.1111/cobi.13087. PubMed DOI

Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13. PubMed DOI PMC

Krah F-S, Seibold S, Brandl R, et al. Independent effects of host and environment on the diversity of wood-inhabiting fungi. J Ecol. 2018;106:1428–1442. doi: 10.1111/1365-2745.12939. DOI

Lee S-I, Spence JR, Langor DW. Succession of saproxylic beetles associated with decomposition of boreal white spruce logs. Agric for Entomol. 2014;16:391–405. doi: 10.1111/afe.12069. DOI

Ligot G, Lejeune P, Rondeux J, Hébert J. Assessing and harmonizing lying deadwood volume with regional forest inventory data in Wallonia (Southern region of Belgium) Open for Sci J. 2012;5:15–22.

Matuszewski S, Bajerlein D, Konwerski S, Szpila K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: composition and residency patterns of carrion fauna. Forensic Sci Int. 2010;195:42–51. doi: 10.1016/j.forsciint.2009.11.007. PubMed DOI

Matuszewski S, Bajerlein D, Konwerski S, Szpila K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: succession of carrion fauna. Forensic Sci Int. 2011;207:150–163. doi: 10.1016/j.forsciint.2010.09.022. PubMed DOI

Matuszewski S, Frątczak K, Konwerski S, et al. Effect of body mass and clothing on carrion entomofauna. Int J Legal Med. 2016;130:221–232. doi: 10.1007/s00414-015-1145-y. PubMed DOI PMC

Metcalf JL, Xu ZZ, Weiss S, et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science. 2016;351:158–162. doi: 10.1126/science.aad2646. PubMed DOI

Miller OK, Jr, Hilton RN. New and interesting agarics from Western Australia. Sydowia. 1986;39:126–128.

Moore JC, Berlow EL, Coleman DC, et al. Detritus, trophic dynamics and biodiversity. Ecol Lett. 2004;7:584–600. doi: 10.1111/j.1461-0248.2004.00606.x. DOI

Müller J, Ulyshen M, Seibold S, et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos. 2020;129:1579–1588. doi: 10.1111/oik.07335. DOI

Newsome TM, Barton B, Buck JC, et al. Monitoring the dead as an ecosystem indicator. Ecol Evol. 2021;11:5844–5856. doi: 10.1002/ece3.7542. PubMed DOI PMC

Nilsson RH, Larsson K-H, Taylor AFS, et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019;47:259–264. doi: 10.1093/nar/gky1022. PubMed DOI PMC

Paczkowski S, Schütz S. Post-mortem volatiles of vertebrate tissue. Appl Microbiol Biotechnol. 2011;91:917–935. doi: 10.1007/s00253-011-3417-x. PubMed DOI PMC

Paletto A, Tosi V. Deadwood density variation with decay class in seven tree species of the Italian Alps. Scand J for Res. 2010;25:164–173. doi: 10.1080/02827581003730773. DOI

Pascual J, von Hoermann C, Rottler-Hoermann A-M, et al. Function of bacterial community dynamics in the formation of cadaveric semiochemicals during in situ carcass decomposition. Environ Microbiol. 2017;19:3310–3322. doi: 10.1111/1462-2920.13828. PubMed DOI

Pechal JL, Crippen TL, Tarone AM, et al. Microbial community functional change during vertebrate carrion decomposition. PLoS ONE. 2013;8:e79035. doi: 10.1371/journal.pone.0079035. PubMed DOI PMC

Pechal, JL (2012) Swine carrion as a model system for studying decomposition ecology: the importance of microbial and primary colonizer interactions. PhD thesis, Texas A&M University, USA

Powers RH. The decomposition of human remains. In: Rich J, Dean DE, Powers RH, editors. Forensic medicine of the lower extremity: human identification and trauma analysis of the thigh, leg, and foot, chapter 1. Totowa: The Humana Press Inc; 2005. pp. 3–15.

Purahong W, Arnstadt T, Kahl T, et al. Are correlations between deadwood fungal community structure, wood physico-chemical properties and lignin-modifying enzymes stable across different geographical regions? Fungal Ecol. 2016;22:98–105. doi: 10.1016/j.funeco.2016.01.002. DOI

Quast C, Pruesse E, Yilmaz P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41:590–596. doi: 10.1093/nar/gks1219. PubMed DOI PMC

Rosenlew H, Roslin T. Habitat fragmentation and the functional efficiency of temperate dung beetles. Oikos. 2008;117:1659–1666. doi: 10.1111/j.1600-0706.2008.16904.x. DOI

Sagara N. Ammonia fungi: a chemoecological grouping of terrestrial fungi. Contrib from Biol Lab Kyoto Univ. 1975;24:205–276.

Sagara N. Association of ectomycorrhizal fungi with decomposed animal wastes in forest habitats: a cleaning symbiosis? Can J Bot. 1995;73:1423–1433. doi: 10.1139/b95-406. DOI

Seibold S, Bässler C, Baldrian P, et al. Dead-wood addition promotes non-saproxylic epigeal arthropods but effects are mediated by canopy openness. Biol Conserv. 2016;204:181–188. doi: 10.1016/j.biocon.2016.09.031. DOI

Seibold S, Hagge J, Müller J, et al. Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For Ecol Manage. 2018;409:564–570. doi: 10.1016/j.foreco.2017.11.052. DOI

Seibold S, Rammer W, Hothorn T, et al. The contribution of insects to global forest deadwood decomposition. Nature. 2021;597:77–81. doi: 10.1038/s41586-021-03740-8. PubMed DOI

Simmons T, Cross PA, Adlam RE, Moffatt C. The influence of insects on decomposition rate in buried and surface remains. J Forensic Sci. 2010;55:889–892. doi: 10.1111/j.1556-4029.2010.01402.x. PubMed DOI

Stokland JN, Siitonen J, Jonsson BG. Biodiversity in dead wood. Cambridge: Cambridge University Press; 2012.

Swift MJ, Heal OW, Anderson JM, Anderson JM. Decomposition in terrestrial ecosystems. Berkeley and Los Angeles: University of California Press; 1979.

Takayama S, Sagara N. The occurrence of Hebeloma vinosophyllum on soil after decomposition of the corpse of domestic rabbit. Trans Mycol Soc Japan. 1981;22:475–477.

Tembe D, Mukaratirwa S. Insect succession and decomposition pattern on pig carrion during warm and cold seasons in KwaZulu-Natal Province of South Africa. J Med Entomol. 2021;58:2047–2057. doi: 10.1093/jme/tjab099. PubMed DOI PMC

Tláskal V, Zrůstová P, Vrška T, Baldrian P. Bacteria associated with decomposing dead wood in a natural temperate forest. FEMS Microbiol Ecol. 2017;93:fix157. doi: 10.1093/femsec/fix157. PubMed DOI

Tomberlin JK, Crippen TL, Tarone AM, et al. A review of bacterial interactions with blow flies (Diptera: Calliphoridae) of medical, veterinary, and forensic importance. Ann Entomol Soc Am. 2017;110:19–36. doi: 10.1093/aesa/saw086. DOI

Ulyshen MD, Šobotník J. An Introduction to the Diversity, Ecology, and Conservation of Saproxylic Insects. In: Ulyshen MD, editor. Saproxylic insects: diversity, ecology and conservation. Cham: Springer International Publishing; 2018. pp. 1–47.

Vodka S, Konvicka M, Cizek L. Habitat preferences of oak-feeding xylophagous beetles in a temperate woodland: implications for forest history and management. J Insect Conserv. 2009;13:553–562. doi: 10.1007/s10841-008-9202-1. DOI

von Hoermann C, Ruther J, Ayasse M. The attraction of virgin female hide beetles (Dermestes maculatus) to cadavers by a combination of decomposition odour and male sex pheromones. Front Zool. 2012;9:1–11. PubMed PMC

von Hoermann C, Jauch D, Kubotsch C, et al. Effects of abiotic environmental factors and land use on the diversity of carrion-visiting silphid beetles (Coleoptera: Silphidae): a large scale carrion study. PLoS ONE. 2018;13:e0196839. doi: 10.1371/journal.pone.0196839. PubMed DOI PMC

von Hoermann C, Weithmann S, Deißler M, et al. Forest habitat parameters influence abundance and diversity of cadaver-visiting dung beetles in Central Europe. R Soc Open Sci. 2020;7:191722. doi: 10.1098/rsos.191722. PubMed DOI PMC

von Hoermann C, Lackner T, Sommer D, et al. Carcasses at fixed locations host a higher diversity of necrophilous beetles. InSects. 2021;12:412. doi: 10.3390/insects12050412. PubMed DOI PMC

Ward DM, Ferris MJ, Nold SC, Bateson MM. A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev. 1998;62:1353–1370. doi: 10.1128/MMBR.62.4.1353-1370.1998. PubMed DOI PMC

Wardle DA, Bardgett RD, Klironomos JN, et al. Ecological linkages between aboveground and belowground biota. Science. 2004;304:1629–1633. doi: 10.1126/science.1094875. PubMed DOI

Weatherbee CR, Pechal JL, Eric Benbow M. The dynamic maggot mass microbiome. Ann Entomol Soc Am. 2017;110:45–53. doi: 10.1093/aesa/saw088. DOI

Wei Z, Liu Y, Feng K, et al. The divergence between fungal and bacterial communities in seasonal and spatial variations of wastewater treatment plants. Sci Total Environ. 2018;628:969–978. doi: 10.1016/j.scitotenv.2018.02.003. PubMed DOI

Weithmann S, von Hoermann C, Degasperi G, et al. Temporal variability of the rove beetle (Coleoptera: Staphylinidae) community on small vertebrate carrion and its potential use for forensic entomology. Forensic Sci Int. 2021;323:110792. doi: 10.1016/j.forsciint.2021.110792. PubMed DOI

Zeariya MG, Hammad KM, Fouda MA, Al-Dali AG, Kabadaia MM. Forensic-insect succession and decomposition patterns of dog and rabbit carcasses in different habitats. J Entomol Zool Stud. 2015;3:473–482.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...