Carcasses at Fixed Locations Host a Higher Diversity of Necrophilous Beetles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34064338
PubMed Central
PMC8147763
DOI
10.3390/insects12050412
PII: insects12050412
Knihovny.cz E-zdroje
- Klíčová slova
- Coleoptera, carrion, decomposition, forest, indicator species, necrobiome, scavenger, succession, trapping,
- Publikační typ
- časopisecké články MeSH
In contrast to other necromass, such as leaves, deadwood, or dung, the drivers of insect biodiversity on carcasses are still incompletely understood. For vertebrate scavengers, a richer community was shown for randomly placed carcasses, due to lower competition. Here we tested if scavenging beetles similarly show a higher diversity at randomly placed carcasses compared to easily manageable fixed places. We sampled 12,879 individuals and 92 species of scavenging beetles attracted to 17 randomly and 12 at fixed places exposed and decomposing carcasses of red deer, roe deer, and red foxes compared to control sites in a low range mountain forest. We used rarefaction-extrapolation curves along the Hill-series to weight diversity from rare to dominant species and indicator species analysis to identify differences between placement types, the decay stage, and carrion species. Beetle diversity decreased from fixed to random locations, becoming increasingly pronounced with weighting of dominant species. In addition, we found only two indicator species for exposure location type, both representative of fixed placement locations and both red listed species, namely Omosita depressa and Necrobia violacea. Furthermore, we identified three indicator species of Staphylinidae (Philonthus marginatus and Oxytelus laqueatus) and Scarabaeidae (Melinopterus prodromus) for larger carrion and one geotrupid species Anoplotrupes stercorosus for advanced decomposition stages. Our study shows that necrophilous insect diversity patterns on carcasses over decomposition follow different mechanisms than those of vertebrate scavengers with permanently established carrion islands as important habitats for a diverse and threatened insect fauna.
Zobrazit více v PubMed
Swift M.J., Heal O.W., Anderson J.M. Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications; Oxford, UK: 1979.
Moore J.C., Berlow E.L., Coleman D.C., de Ruiter P.C., Dong Q., Hastings A., Johnson N.C., McCann K.S., Melville K., Morin P.J., et al. Detritus, trophic dynamics and biodiversity. Ecol. Lett. 2004;7:584–600. doi: 10.1111/j.1461-0248.2004.00606.x. DOI
Parmenter R.R., MacMahon J.A. Carrion decomposition and nutrient cycling in a semiarid shrub--steppe ecosystem. Ecol. Monogr. 2009;79:637–661. doi: 10.1890/08-0972.1. DOI
Barton P.S., Cunningham S.A., Lindenmayer D.B., Manning A.D. The role of carrion in maintaining biodiversity and ecological processes in terrestrial ecosystems. Oecologia. 2013;171:761–772. doi: 10.1007/s00442-012-2460-3. PubMed DOI
Benbow M.E., Barton P.S., Ulyshen M.D., Beasley J.C., DeVault T.L., Strickland M.S., Tomberlin J.K., Jordan H.R., Pechal J.L. Necrobiome framework for bridging decomposition ecology of autotrophically and heterotrophically derived organic matter. Ecol. Monogr. 2019;89:e01331. doi: 10.1002/ecm.1331. DOI
Gessner M.O., Swan C.M., Dang C.K., McKie B.G., Bardgett R.D., Wall D.H., Hättenschwiler S. Diversity meets decomposition. Trends Ecol. Evol. 2010;25:372–380. doi: 10.1016/j.tree.2010.01.010. PubMed DOI
Benbow M.E., Receveur J.P., Lamberti G.A. Death and decomposition in aquatic ecosystems. Front. Ecol. Evol. 2020;8:17. doi: 10.3389/fevo.2020.00017. DOI
Lamberti G.A., Levesque N.M., Brueseke M.A., Chaloner D.T., Benbow M.E. Editorial: Animal mass mortalities in aquatic ecosystems: How common and influential? Front. Ecol. Evol. 2020;8:343. doi: 10.3389/fevo.2020.602225. DOI
Yang L.H., Edwards K.F., Byrnes J.E., Bastow J.L., Wright A.N., Spence K.O. A meta-analysis of resource pulse-consumer interactions. Ecol. Monogr. 2010;80:125–151. doi: 10.1890/08-1996.1. DOI
Seibold S., Hagge J., Müller J., Gruppe A., Brandl R., Bässler C., Thorn S. Experiments with dead wood reveal the importance of dead branches in the canopy for saproxylic beetle conservation. For. Ecol. Manag. 2018;409:564–570. doi: 10.1016/j.foreco.2017.11.052. DOI
Müller J., Ulyshen M., Seibold S., Cadotte M., Chao A., Bässler C., Vogel S., Hagge J., Weiß I., Baldrian P., et al. Primary determinants of communities in deadwood vary among taxa but are regionally consistent. Oikos. 2020;129:1579–1588. doi: 10.1111/oik.07335. DOI
Braack L.E.O. Community dynamics of carrion-attendant arthropods in tropical African woodland. Oecologia. 1987;72:402–409. doi: 10.1007/BF00377571. PubMed DOI
Payne J.A., King E.W., Beinhart G. Arthropod succession and decomposition of buried pigs. Nature. 1968;219:1180–1181. doi: 10.1038/2191180a0. PubMed DOI
Pechal J.L., Crippen T.L., Tarone A.M., Lewis A.J., Tomberlin J.K., Benbow M.E. Microbial community functional change during vertebrate carrion decomposition. PLoS ONE. 2013;8:e79035. doi: 10.1371/journal.pone.0079035. PubMed DOI PMC
Pechal J.L., Benbow M.E., Crippen T.L., Tarone A.M., Tomberlin J.K. Delayed insect access alters carrion decomposition and necrophagous insect community assembly. Ecosphere. 2014;5:art45. doi: 10.1890/ES14-00022.1. DOI
Bump J.K., Peterson R.O., Vucetich J.A. Wolves modulate soil nutrient heterogeneity and foliar nitrogen by configuring the distribution of ungulate carcasses. Ecology. 2009;90:3159–3167. doi: 10.1890/09-0292.1. PubMed DOI
Coe M. The decomposition of elephant carcases in the Tsavo (East) National Park, Kenya. J. Arid Environ. 1978;1:71–86. doi: 10.1016/S0140-1963(18)31756-7. DOI
Benbow M.E., Tomberlin J.K., Tarone A.M. Carrion Ecology, Evolution, and Their Applications. CRC Press; Boca Raton, FL, USA: 2015.
Wilmers C.C., Stahler D.R., Crabtree R.L., Smith D.W., Getz W.M. Resource dispersion and consumer dominance: Scavenging at wolf-and hunter-killed carcasses in Greater Yellowstone, USA. Ecol. Lett. 2003;6:996–1003. doi: 10.1046/j.1461-0248.2003.00522.x. DOI
Cortés-Avizanda A., Jovani R., Carrete M., Donázar J.A. Resource unpredictability promotes species diversity and coexistence in an avian scavenger guild: A field experiment. Ecology. 2012;93:2570–2579. doi: 10.1890/12-0221.1. PubMed DOI
Stiegler J., Von Hoermann C., Müller J., Benbow M.E., Heurich M. Carcass provisioning for scavenger conservation in a temperate forest ecosystem. Ecosphere. 2020;11:e03063. doi: 10.1002/ecs2.3063. DOI
Lai Y.C., Liu Y.R. Noise promotes species diversity in nature. Phys. Rev. Lett. 2005;94:038102. doi: 10.1103/PhysRevLett.94.038102. PubMed DOI
Wilmers C.C., Crabtree R.L., Smith D.W., Murphy K.M., Getz W.M. Trophic facilitation by introduced top predators: Grey wolf subsidies to scavengers in Yellowstone National Park. J. Anim. Ecol. 2003;72:909–916. doi: 10.1046/j.1365-2656.2003.00766.x. DOI
Schoenly K., Reid W. Dynamics of heterotrophic succession in carrion arthropod assemblages: Discrete seres or a continuum of change? Oecologia. 1987;73:192–202. doi: 10.1007/BF00377507. PubMed DOI
Boulton A.J., Lake P.S. Dynamics of heterotrophic succession in carrion arthropod assemblages. Oecologia. 1988;76:477–480. doi: 10.1007/BF00377047. PubMed DOI
Schoenly K.G., Reid W. Dynamics of heterotrophic succession in carrion revisited. Oecologia. 1989;79:140–142. doi: 10.1007/BF00378252. PubMed DOI
Moura M.O., Monteiro-Filho E.L.d.A., de Carvalho C.J.B. Heterotrophic succession in carrion arthropod assemblages. Brazilian Arch. Biol. Technol. 2005;48:477–486. doi: 10.1590/S1516-89132005000300018. DOI
Matuszewski S., Bajerlein D., Konwerski S., Szpila K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 3: Succession of carrion fauna. Forensic Sci. Int. 2011;207:150–163. doi: 10.1016/j.forsciint.2010.09.022. PubMed DOI
Mondor E.B., Tremblay M.N., Tomberlin J.K., Benbow E.M., Tarone A.M., Crippen T.L. The ecology of carrion decomposition. Nat Educ Knowl. 2012;3:21.
Fiedler A., Halbach M., Sinclair B., Benecke M. What is the edge of a forest? A diversity analysis of adult Diptera found on decomposing piglets inside and on the edge of a Western German woodland inspired by a courtroom question. Entomol. Heute. 2008;20:173–191.
Goff M.L. Early post-mortem changes and stages of decomposition in exposed cadavers. Exp. Appl. Acarol. 2009;49:21–36. doi: 10.1007/s10493-009-9284-9. PubMed DOI
Introna F., Campobasso C.P. Forensic dipterology. In: Papp L., Darvas B., editors. Contributions to a Manual of Palaearctic Diptera, General and Applied Dipterology. Volume 1. Science Herald; Budapest, Hungary: 2000. pp. 793–846.
von Hoermann C., Ruther J., Ayasse M. The attraction of virgin female hide beetles (Dermestes maculatus) to cadavers by a combination of decomposition odour and male sex pheromones. Front. Zool. 2012;9:1–11. doi: 10.1186/1742-9994-9-18. PubMed DOI PMC
Amendt J., Krettek R., Zehner R. Forensic entomology. Naturwissenschaften. 2004;91:51–65. doi: 10.1007/s00114-003-0493-5. PubMed DOI
Strümpher W.P., Farrell J., Scholtz C.H. Trogidae (Coleoptera: Scarabaeoidea) in forensic entomology: Occurrence of known and new species in Queensland, Australia. Austral Entomol. 2014;53:368–372. doi: 10.1111/aen.12084. DOI
von Hoermann C., Weithmann S., Deißler M., Ayasse M., Steiger S. Forest habitat parameters influence abundance and diversity of cadaver-visiting dung beetles in Central Europe. R. Soc. Open Sci. 2020;7:191722. doi: 10.1098/rsos.191722. PubMed DOI PMC
Heurich M., Beudert B., Rall H., Křenová Z. National parks as model regions for interdisciplinary long-term ecological research: The Bavarian Forest and Šumavá National Parks underway to transboundary ecosystem research. In: Müller F., Baessler C., Schubert H., Klotz S., editors. Long-Term Ecological Research. Springer; Dordrecht, The Netherlands: 2010. pp. 327–344.
Cailleret M., Heurich M., Bugmann H. Reduction in browsing intensity may not compensate climate change effects on tree species composition in the Bavarian Forest National Park. For. Ecol. Manag. 2014;328:179–192. doi: 10.1016/j.foreco.2014.05.030. DOI
Seibold S., Büche B., Szallies A., Müller J. Neue Käfernachweise im Nationalpark Bayerischer Wald im Rahmen von Totholzexperimenten (Insecta: Coleoptera) Beiträge zur Bayerischen Entomofaunistik. 2017;17:1–17.
Möst L., Hothorn T., Müller J., Heurich M. Creating a landscape of management: Unintended effects on the variation of browsing pressure in a national park. For. Ecol. Manag. 2015;338:46–56. doi: 10.1016/j.foreco.2014.11.015. DOI
Müller J., Brandl R. Assessing biodiversity by remote sensing in mountainous terrain: The potential of LiDAR to predict forest beetle assemblages. J. Appl. Ecol. 2009;46:897–905. doi: 10.1111/j.1365-2664.2009.01677.x. DOI
Farwig N., Brandl R., Siemann S., Wiener F., Müller J. Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia. 2014;175:1291–1300. doi: 10.1007/s00442-014-2974-y. PubMed DOI
Dekeirsschieter J., Verheggen F.J., Haubruge E., Brostaux Y. Carrion beetles visiting pig carcasses during early spring in urban, forest and agricultural biotopes of Western Europe. J. Insect. Sci. 2011;11:73. doi: 10.1673/031.011.7301. PubMed DOI PMC
von Hoermann C., Jauch D., Kubotsch C., Reichel-Jung K., Steiger S., Ayasse M. Effects of abiotic environmental factors and land use on the diversity of carrion-visiting silphid beetles (Coleoptera: Silphidae): A large scale carrion study. PLoS ONE. 2018;13:e0196839. doi: 10.1371/journal.pone.0196839. PubMed DOI PMC
Matuszewski S., Bajerlein D., Konwerski S., Szpila K. Insect succession and carrion decomposition in selected forests of Central Europe. Part 2: Composition and residency patterns of carrion fauna. Forensic Sci. Int. 2010;195:42–51. doi: 10.1016/j.forsciint.2009.11.007. PubMed DOI
R: A Language and Environment for Statistical Computing (Wien: R Foundation for Statistical Computing) [(accessed on 10 October 2020)]; Available online: https://www.R-project.org/
Hill M.O. Diversity and evenness: A unifying notation and its consequences. Ecology. 1973;54:427–432. doi: 10.2307/1934352. DOI
Chao A., Gotelli N.J., Hsieh T.C., Sander E.L., Ma K.H., Colwell R.K., Ellison A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014;84:45–67. doi: 10.1890/13-0133.1. DOI
Hsieh T.C., Ma K.H., Chao A. iNEXT: An R package for interpolation and extrapolation of species diversity (Hill numbers) Methods Ecol. Evol. 2016;7:1451–1456. doi: 10.1111/2041-210X.12613. DOI
De Cáceres M., Legendre P. Associations between species and groups of sites: Indices and statistical inference. Ecology. 2009;90:3566–3574. doi: 10.1890/08-1823.1. PubMed DOI
Esser J. Rote Liste und Gesamtartenliste der Kapuzinerkäferartigen (Bostrichoidea), Buntkäferartigen (Cleroidea), Plattkäferartigen (Cucujoidea), Schnellkäferartigen (Elateroidea), Werftkäferartigen (Lymexyloidea) und Schwarzkäferartigen (Tenebrioidea) Universitätsverlag der TU Berlin; Berlin, Germany: 2017.
VanLaerhoven S.L., Benbow M.E., Tomberlin J.K., Tarone A.M. Modeling species interactions within carrion food webs. In: Benbow M.E., Tomberlin J.K., Tarone A.M., editors. Carrion Ecology, Evolution, and Their Applications. CRC; Boca Raton, FL, USA: 2015. pp. 231–245.
Pukowski E. Ökologische Untersuchungen an Necrophorus F. Z. Morphol. Okol. Tiere. 1933;27:518–586. doi: 10.1007/BF00403155. DOI
Kentner E., Streit B. Temporal distribution and habitat preference of congeneric insect species found at rat carrion. Pedobiologia. 1990;34:347–359.
Scott M.P. The ecology and behavior of burying beetles. Annu. Rev. Entomol. 1998;43:595–618. doi: 10.1146/annurev.ento.43.1.595. PubMed DOI
Matuszewski S., Bajerlein D., Konwerski S., Szpila K. An initial study of insect succession and carrion decomposition in various forest habitats of Central Europe. Forensic Sci. Int. 2008;180:61–69. doi: 10.1016/j.forsciint.2008.06.015. PubMed DOI
Kadlec J., Mikatova S., Maslo P., Sipkova H., Sipek P., Sladecek F.X.J. Delaying insect access alters community composition on small carrion: A quantitative approach. Entomol. Exp. Appl. 2019;167:729–740. doi: 10.1111/eea.12826. DOI
Anderson G.S. Factors that influence insect succession on carrion. In: Byrd J., Castner E., editors. Forensic Entomology: The Utility of Arthropods in Legal Investigations. CRC Press; Boca Raton, FL, USA: 2009. pp. 201–250.
Anderson G.S. Forensic entomology. In: James S.H., Nordby J., editors. Forensic Science, an Introduction to Scientific and Investigative Techniques. CRC Press; Boca Raton, FL, USA: 2009. pp. 137–165.
Lindgren N.K., Bucheli S.R., Archambeault A.D., Bytheway J.A. Exclusion of forensically important flies due to burying behavior by the red imported fire ant (Solenopsis invicta) in southeast Texas. Forensic Sci. Int. 2011;204:e1–e3. doi: 10.1016/j.forsciint.2010.05.016. PubMed DOI
DeVault T.L., Rhodes O.E., Jr., Shivik J.A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos. 2003;102:225–234. doi: 10.1034/j.1600-0706.2003.12378.x. DOI
van den Heever L., Thompson L.J., Bowerman W.W., Smit-Robinson H., Shaffer L.J., Harrell R.M., Ottinger M.A. Reviewing the role of vultures at the human–wildlife–livestock disease interface: An African perspective. J. Raptor Res. 2021;55 doi: 10.3356/JRR-20-22. DOI
Connell J.H., Slatyer R.O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 1977;111:1119–1144. doi: 10.1086/283241. DOI
Jones C.G., Lawton J.H., Shachak M. Organisms as ecosystem engineers. In: Samson F.B., Knopf F.L., editors. Ecosystem Management. Springer; New York, NY, USA: 1994. pp. 130–147.
Moleón M., Martínez-Carrasco C., Muellerklein O.C., Getz W.M., Muñoz-Lozano C., Sánchez-Zapata J.A. Carnivore carcasses are avoided by carnivores. J. Anim. Ecol. 2017;86:1179–1191. doi: 10.1111/1365-2656.12714. PubMed DOI
Muñoz-Lozano C., Martín-Vega D., Martínez-Carrasco C., Sánchez-Zapata J.A., Morales-Reyes Z., Gonzálvez M., Moleón M. Avoidance of carnivore carcasses by vertebrate scavengers enables colonization by a diverse community of carrion insects. PLoS ONE. 2019;14:e0221890. doi: 10.1371/journal.pone.0221890. PubMed DOI PMC
Opitz W., Arnett J.R.H. Cleridae Latreille 1804. In: Arnett R.H., Thomas M.C., Skelley P.E., Frank J.H., editors. American Beetles, Polyphaga: Scarabaeoidea through Curculionoidea. Volume 2. CRC Press; Boca Raton, FL, USA: 2002. pp. 267–280.
Knull J.N. The checkered beetles of Ohio (Coleoptera: Cleridae) Ohio Biol. Surv. Bull. 1951;8:268–350.
Kočárek P. Decomposition and Coleoptera succession on exposed carrion of small mammal in Opava, the Czech Republic. Eur. J. Soil Biol. 2003;39:31–45. doi: 10.1016/S1164-5563(02)00007-9. DOI
Anton E., Niederegger S., Beutel R.G. Beetles and flies collected on pig carrion in an experimental setting in Thuringia and their forensic implications. Med. Vet. Entomol. 2011;25:353–364. doi: 10.1111/j.1365-2915.2011.00975.x. PubMed DOI
Haelewaters D., Vanpoucke S., Raes D., Krawczynski R. On carrion-associated beetles in the Sonian Forest (Belgium): Observations on five deer carcasses. Bull. Société R. Belge d’Entomologie. 2015;151:25–33.
Carter D.O., Yellowlees D., Tibbett M. Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften. 2007;94:12–24. doi: 10.1007/s00114-006-0159-1. PubMed DOI
Benbow M.E., Lewis A.J., Tomberlin J.K., Pechal J.L. Seasonal necrophagous insect community assembly during vertebrate carrion decomposition. J. Med. Entomol. 2013;50:440–450. doi: 10.1603/ME12194. PubMed DOI
Saloña M.I., Moraza M.L., Carles-Tolrá M., Iraola V., Bahillo P., Yélamos T., Outerelo R., Alcaraz R. Searching the soil: Forensic importance of edaphic fauna after the removal of a corpse. J. Forensic Sci. 2010;55:1652–1655. doi: 10.1111/j.1556-4029.2010.01506.x. PubMed DOI
von Hoermann C. ((Bavarian Forest National Park Administration, Grafenau, Bavaria, Germany)). Personal communication. 2018.
Koch K. Die Käfer Mitteleuropas. Ökologie Band 2. Goecke und Evers Verlag; Krefeld, Germany: 1989.
Philp B., Hamlin I., Lavery A. Insects and arachnids of Ardeer, North Ayrshire, Scotland. Glas. Nat. 2020;27 doi: 10.37208/tgn27215. DOI
Dekeirsschieter J., Frederick C., Verheggen F.J., Drugmand D., Haubruge E. Diversity of forensic rove beetles (Coleoptera, Staphylinidae) associated with decaying pig carcass in a forest biotope. J. Forensic Sci. 2013;58:1032–1040. doi: 10.1111/1556-4029.12095. PubMed DOI
Vindstad O.P.L., Schultze S., Jepsen J.U., Biuw M., Kapari L., Sverdrup-Thygeson A., Ims R.A. Numerical responses of saproxylic beetles to rapid increases in dead wood availability following geometrid moth outbreaks in sub-arctic mountain birch forest. PLoS ONE. 2014;9:e99624. doi: 10.1371/journal.pone.0099624. PubMed DOI PMC
Buckland P.I., Buckland P.C. BugsCEP: Coleopteran Ecology Package (Software) NOAA/NCDC Paleoclimatology Program; Boulder, CO, USA: 2006.
Koch K. Die Käfer Mitteleuropas. Ökologie Band 1. Goecke und Evers Verlag; Krefeld, Germany: 1989.
Peschke K., Friedrich P., Kaiser U., Franke S., Francke W. Isopropyl (Z9)-hexadecenoate as a male attractant pheromone from the sternal gland of the rove beetle Aleochara curtala (Coleoptera: Staphylinidae) Chemoecology. 1999;9:47–54. doi: 10.1007/s000490050033. DOI
Lipkow E. Habits of Philonthus species and other Staphylinidae (Coleoptera) in dung. Drosera. 1982;1:47–54.
Weithmann S., Kuppler J., Degasperi G., Steiger S., Ayasse M., von Hoermann C. Local and landscape effects on carrion-associated rove beetle (Coleoptera: Staphylinidae) communities in German forests. Insects. 2020;11:828. doi: 10.3390/insects11120828. PubMed DOI PMC
von Lengerken H. Die Brutfürsorge- und Brutpflegeinstinkte der Käfer. Akademische Verlagsgesellschaft Geest und Portig K.G.; Leipzig, Germany: 1954.
Teichert M. Nahrungsspeicherung von Geotrupes vernalis L. und Geotrupes stercorosus Scriba (Coleopt. Scarab.) Wiss. Z. Martin-Luther-Univ. Halle-Wittenb. 1956;5:669–672.
Byk A., Semkiw P. Habitat preferences of the forest dung beetle Anoplotrupes stercorosus (Scriba, 1791) (Coleoptera: Geotrupidae) in the Białowieża Forest. Acta Sci. Pol. Silvarum Colendarum Ratio Ind. Lignaria. 2010;9:17–28.
Jarmusz M., Bajerlein D. Anoplotrupes stercorosus (Scr.) and Trypocopris vernalis (L.) (Coleoptera: Geotrupidae) visiting exposed pig carrion in forests of Central Europe: Seasonality, habitat preferences and influence of smell of decay on their abundances. Entomol. Gen. 2015;35:213–228. doi: 10.1127/entomologia/2015/0210. DOI
Růžička J., Jakubec P. Icones Insectorum Europae Centralis. Coleoptera: Agyrtidae, Silphidae. Folia Heyrovskiana, Series B. 2016;26:1–17.
Růžička J. ((Czech University of Life Sciences Prague, Prague, Czech Republic)). Personal communication. 2021.
Newton A.F. Review of Agyrtidae (Coleoptera), with a new genus and species from New Zealand. Annal. Zool. 1997;47:111–156.
Rade E. Necrophilus subterraneus Dej. und andere Käfer des Göttinger Gebietes 1893. Entomol. Nachr. 1893;19:357–363.
Zwick P. Die Jugendstadien des Käfers Necrophilus subterraneus (Coleoptera: Silphidae: Agyrtinae) Beiträge Naturkd. Osthessen. 1981;17:133–140.
Schawaller W. Die Gattung Necrophilus Latreille 1829 im Himalaya (Insecta: Coleoptera: Agyrtidae) Senckenb. Biol. 1986;66:311–319.
Růžička J. Agyrtidae. In: Löbl I., Löbl D., editors. Catalogue of Palaearctic Coleoptera. Hydrophiloidea – Staphylinoidea. Revised and Updated ed. Volume 2/1. Brill; Leiden, The Nederlands: Boston, MA, USA: 2015. pp. 5, 177–180.
Newton A.F. StaphBase: Staphyliniformia world catalog database (version January 2021) In: Roskov Y., Ower G., Orrell T., Nicolson D., Bailly N., Kirk P.M., Bourgoin T., DeWalt R.E., Decock W., Nieukerken E., et al., editors. Species 2000 & ITIS Catalogue of Life, 20th February 2019. Naturalis; Leiden, The Nederlands: 2021. [(accessed on 18 March 2021)]. Available online: www.catalogueoflife.org/col.
Růžička J., Puetz A. New species and new records of Agyrtidae (Coleoptera) from China, India, Myanmar, Thailand and Vietnam. Acta Entomol. Musei Natl. Pragae. 2009;49:631–650.
Nikitsky N.B. Morfologia lichinki Sphaerites glabratus F. I filogenia Histeroidea. Zool. Zhurnal. 1976;55:531–537.
Newton A.F. 13.1 Sphaeritidae Shuckard, 1839. In: Beutel R.G., Leschen R.A.B., editors. Handbook of Zoology, Arthropoda: Insecta. Coleoptera, Beetles. Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga Partim) Volume 1. Walter de Gruyter; Berlin, Germany: 2016. pp. 274–277.
Lackner T. Coleoptera: Sphaeritidae, Histeridae. Folia Heyrovskyana Ser. B. 2015;23:1–33.
Löbl I. Sphaeritidae. In: Löbl I., Löbl D., editors. Catalogue of Palaearctic Coleoptera. Hydrophiloidea-Staphylinoidea. Revised and Updated ed. Volume 2/1. Brill; Leiden, The Nederlands: Boston, MA, USA: 2015. p. 76.
Thorn S., Bässler C., Svoboda M., Müller J. Effects of natural disturbances and salvage logging on biodiversity-lessons from the Bohemian Forest. For. Ecol. Manag. 2017;388:113–119. doi: 10.1016/j.foreco.2016.06.006. DOI