Quantifying wood decomposition by insects and fungi using computed tomography scanning and machine learning
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36168033
PubMed Central
PMC9515192
DOI
10.1038/s41598-022-20377-3
PII: 10.1038/s41598-022-20377-3
Knihovny.cz E-zdroje
- MeSH
- brouci * MeSH
- dřevo * mikrobiologie MeSH
- ergosterol MeSH
- houby MeSH
- počítačová rentgenová tomografie MeSH
- strojové učení MeSH
- uhlík MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ergosterol MeSH
- uhlík MeSH
Wood decomposition is a central process contributing to global carbon and nutrient cycling. Quantifying the role of the major biotic agents of wood decomposition, i.e. insects and fungi, is thus important for a better understanding of this process. Methods to quantify wood decomposition, such as dry mass loss, suffer from several shortcomings, such as destructive sampling or subsampling. We developed and tested a new approach based on computed tomography (CT) scanning and semi-automatic image analysis of logs from a field experiment with manipulated beetle communities. We quantified the volume of beetle tunnels in wood and bark and the relative wood volume showing signs of fungal decay and compared both measures to classic approaches. The volume of beetle tunnels was correlated with dry mass loss and clearly reflected the differences between beetle functional groups. Fungal decay was identified with high accuracy and strongly correlated with ergosterol content. Our data show that this is a powerful approach to quantify wood decomposition by insects and fungi. In contrast to other methods, it is non-destructive, covers entire deadwood objects and provides spatially explicit information opening a wide range of research options. For the development of general models, we urge researchers to publish training data.
Bavarian Forest National Park Freyungerstrasse 2 94481 Grafenau Germany
Berchtesgaden National Park Doktorberg 6 83471 Berchtesgaden Germany
Ecosystem Dynamics and Forest Management Group Technical University of Munich 85354 Freising Germany
Forest Nature Conservation Georg August University Göttingen 37077 Göttingen Germany
MITOS GmbH Lichtenbergstrasse 8 85748 Garching Germany
Terrestrial Ecology Research Group Technical University of Munich 85354 Freising Germany
Zobrazit více v PubMed
Pan Y, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–993. PubMed
Seibold S, et al. The contribution of insects to global forest deadwood decomposition. Nature. 2021;597:77–81. PubMed
Filipiak M. Nutrient dynamics in decomposing dead wood in the context of wood eater requirements: The ecological stoichiometry of saproxylophagous insects. In: Ulyshen MD, editor. Saproxylic Insects. Springer; 2018. pp. 429–470.
Weedon JT, et al. Global meta-analysis of wood decomposition rates: A role for trait variation among tree species? Ecol. Lett. 2009;12:45–56. PubMed
Oberle B, et al. Accurate forest projections require long-term wood decay experiments because plant trait effects change through time. Glob. Change Biol. 2020;26:864–875. PubMed
Guo C, Yan E, Cornelissen JHC. Size matters for linking traits to ecosystem multifunctionality. Trends Ecol. Evol. 2022 doi: 10.1016/j.tree.2022.06.003. PubMed DOI
Ulyshen MD. Wood decomposition as influenced by invertebrates. Biol. Rev. 2016;91:70–85. PubMed
Lustenhouwer N, et al. A trait-based understanding of wood decomposition by fungi. Proc. Natl. Acad. Sci. U.S.A. 2020;117:1–8. PubMed PMC
Tláskal V, et al. Complementary roles of wood-Inhabiting fungi and bacteria facilitate deadwood decomposition. mSystems. 2021;6:e01078-20. PubMed PMC
Schmidt O. Wood and Tree Fungi: Biology, Damage, Protection and Use. Springer; 2006.
Arantes V, Goodell B. Current understanding of brown-rot fungal biodegradation mechanisms: A review. ACS Symp. Ser. 2014;1158:3–21.
Jacobsen RM, Sverdrup-Thygeson A, Kauserud H, Mundra S, Birkemoe T. Exclusion of invertebrates influences saprotrophic fungal community and wood decay rate in an experimental field study. Funct. Ecol. 2018;32:2571–2582.
Fukami T, et al. Assembly history dictates ecosystem functioning: Evidence from wood decomposer communities. Ecol. Lett. 2010;13:675–684. PubMed
Wang JY, et al. Durability of mass timber structures: A review of the biological risks. Wood Fiber Sci. 2018;50:110–127.
Venugopal P, Junninen K, Linnakoski R, Edman M, Kouki J. Climate and wood quality have decayer-specific effects on fungal wood decomposition. For. Ecol. Manag. 2016;360:341–351.
Ulyshen MD, Wagner TL. Quantifying arthropod contributions to wood decay. Methods Ecol. Evol. 2013;4:345–352.
Freschet GT, Weedon JT, Aerts R, van Hal JR, Cornelissen JHC. Interspecific differences in wood decay rates: Insights from a new short-term method to study long-term wood decomposition. J. Ecol. 2012;100:161–170.
Chang C, et al. Methodology matters for comparing coarse wood and bark decay rates across tree species. Methods Ecol. Evol. 2020;11:828–838.
Hervé V, Mothe F, Freyburger C, Gelhaye E, Frey-Klett P. Density mapping of decaying wood using X-ray computed tomography. Int. Biodeterior. Biodegrad. 2014;86:358–363.
Williamson GB, Wiemann MC. Measuring wood specific gravity...Correctly. Am. J. Bot. 2010;97:519–524. PubMed
Van Der Wal A, Gunnewiek PJAK, Cornelissen JHC, Crowther TW, De Boer W. Patterns of natural fungal community assembly during initial decay of coniferous and broadleaf tree logs. Ecosphere. 2016;7:e01393.
Saint-Germain M, Buddle CM, Drapeau P. Substrate selection by saprophagous wood-borer larvae within highly variable hosts. Entomol. Exp. Appl. 2010;134:227–233.
Lettenmaier L, et al. Beetle diversity is higher in sunny forests due to higher microclimatic heterogeneity in deadwood. Oecologia. 2022 doi: 10.1007/s00442-022-05141-8. PubMed DOI
Gao S, et al. A critical analysis of methods for rapid and nondestructive determination of wood density in standing trees. Ann. For. Sci. 2017;74:1–13.
Arnstadt T, et al. Dynamics of fungal community composition, decomposition and resulting deadwood properties in logs of Fagus sylvatica, Picea abies and Pinus sylvestris. For. Ecol. Manag. 2016;382:129–142.
Gessner MO. Ergosterol as a measure of fungal biomass. In: Bärlocher F, Gessner MO, Graça M, editors. Methods to Study Litter Decomposition. Springer; 2020. pp. 247–255.
Baldrian P, et al. Responses of the extracellular enzyme activities in hardwood forest to soil temperature and seasonality and the potential effects of climate change. Soil Biol. Biochem. 2013;56:60–68.
Strid Y, Schroeder M, Lindahl B, Ihrmark K, Stenlid J. Bark beetles have a decisive impact on fungal communities in Norway spruce stem sections. Fungal Ecol. 2014;7:47–58.
Hagge J, et al. Bark coverage shifts assembly processes of microbial decomposer communities in dead wood. Proc. R. Soc. B Biol. Sci. 2019;286:20191744. PubMed PMC
Birkemoe T, Jacobsen RM, Sverdrup-Thygeson A, Biedermann PHW. Insect–fungus interactions in dead wood. In: Ulyshen MD, editor. Saproxylic Insects. Springer; 2018. pp. 377–427.
Leach JG, Ork LW, Christensen C. Further studies on the interrelationship of insects and fungi in the deterioration of felled Norway pine logs. J. Agric. Res. 1937;55:129–140.
Ulyshen MD, Wagner TL, Mulrooney JE. Contrasting effects of insect exclusion on wood loss in a temperate forest. Ecosphere. 2014;5:art47.
Shigo, A. L. & Marx, H. G. Compartmentalization of decay in trees (1977).
De Ligne L, et al. Studying the spatio-temporal dynamics of wood decay with X-ray CT scanning. Holzforschung. 2022;76:408–420.
Freyburger C, Longuetaud F, Mothe F, Constant T, Leban JM. Measuring wood density by means of X-ray computer tomography. Ann. For. Sci. 2009;66:804.
Wei Q, Leblon B, La Rocque A. On the use of X-ray computed tomography for determining wood properties: A review. Can. J. For. Res. 2011;41:2120–2140.
Fuchs A, Schreyer A, Feuerbach S, Korb J. A new technique for termite monitoring using computer tomography and endoscopy. Int. J. Pest Manag. 2004;50:63–66.
Choi B, Himmi SK, Yoshimura T. Quantitative observation of the foraging tunnels in Sitka spruce and Japanese cypress caused by the drywood termite Incisitermes minor (Hagen) by 2D and 3D X-ray computer tomography (CT) Holzforschung. 2017;71:535–542.
Bélanger S, et al. Effect of temperature and tree species on damage progression caused by whitespotted sawyer (Coleoptera: Cerambycidae) larvae in recently burned logs. J. Econ. Entomol. 2013;106:1331–1338. PubMed
Pereira Junior, A. & Garcia de Carvalho, M. An initial study in wood tomographic image classification using the SVM and CNN techniques. In Proceedings of the 17th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2022) Vol. 4 575–581 (2022).
Kautz M, Peter FJ, Harms L, Kammen S, Delb H. Patterns, drivers and detectability of infestation symptoms following attacks by the European spruce bark beetle. J. Pest Sci. 2022 doi: 10.1007/s10340-022-01490-8. DOI
Ehnström B, Axelsson R. Insektsgnag i bark och ved. ArtDatabanken SLU; 2002.
Philpott TJ, Prescott CE, Chapman WK, Grayston SJ. Nitrogen translocation and accumulation by a cord-forming fungus (Hypholoma fasciculare) into simulated woody debris. For. Ecol. Manag. 2014;315:121–128.
Kahl T, et al. Wood decay rates of 13 temperate tree species in relation to wood properties, enzyme activities and organismic diversities. For. Ecol. Manag. 2017;391:86–95.
Deflorio G, Johnson C, Fink S, Schwarze FWMR. Decay development in living sapwood of coniferous and deciduous trees inoculated with six wood decay fungi. For. Ecol. Manag. 2008;255:2373–2383.
Fuhr MJ, Schubert M, Schwarze FWMR, Herrmann HJ. Modelling the hyphal growth of the wood-decay fungus Physisporinus vitreus. Fungal Biol. 2011;115:919–932. PubMed
Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. Ilastik: Interactive learning and segmentation toolkit. In IEEE International Symposium on Biomedical Imaging: From Nano to Macro 230–233. 10.1109/ISBI.2011.5872394 (2011).
Dodds KJ, Graber C, Stephen FM. Facultative intraguild predation by larval Cerambycidae (Coleoptera) on bark beetle larvae (Coleoptera: Scolytidae) Environ. Entomol. 2001;30:17–22.
Graham SA. Temperature as a limiting factor in the life of subcortical insects. J. Econ. Entomol. 1924;17:377–383.
Baldrian P, et al. Estimation of fungal biomass in forest litter and soil. Fungal Ecol. 2013;6:1–11.
Šnajdr J, et al. Spatial variability of enzyme activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biol. Biochem. 2008;40:2068–2075.
Möller G. Struktur- und Substratbindung holzbewohnender Insekten, Schwerpunkt Coleoptera—Käfer. Dissertation at Freien Universität Berlin. Freie Universität Berlin; 2009.
Baldrian P. Forest microbiome: Diversity, complexity and dynamics. FEMS Microbiol. Rev. 2017;41:109–130. PubMed
Steger C, Ulrich M, Wiedemann C. Machine Vision Algorithms and Applications. Wiley; 2008.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional Networks for Biomedical Image Segmentation. Springer; 2015.
Jansche, M. Maximum expected F-measure training of logistic regression models. In Proceedings of the conference on human language technology and empirical meth-ods in natural language processing 692–699 (Association for Computational Linguistics, 2005).
Van Rossum G, Drake FL. Python 3 Reference Manual. CreateSpace; 2009.
Virtanen P, Gommers R, Oliphant TE, et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods. 2020;17:261–272. PubMed PMC
Chollet, F. Keras. https://github.com/fchollet/keras (2015).
Abadi, M. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. Tensorflow.org. (2015).
R Core Team. R: A language and environment for statistical computing (2020).