Plants in the UK flower a month earlier under recent warming
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35105239
PubMed Central
PMC8808087
DOI
10.1098/rspb.2021.2456
Knihovny.cz E-zdroje
- Klíčová slova
- British Isles, citizen science, climate change, ecosystem service, plant phenology, woodland trust,
- MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- květy * fyziologie MeSH
- roční období MeSH
- rostliny MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené království MeSH
Global temperatures are rising at an unprecedented rate, but environmental responses are often difficult to recognize and quantify. Long-term observations of plant phenology, the annually recurring sequence of plant developmental stages, can provide sensitive measures of climate change and important information for ecosystem services. Here, we present 419 354 recordings of the first flowering date from 406 plant species in the UK between 1753 and 2019 CE. Community-wide first flowering advanced by almost one month on average when comparing all observations before and after 1986 (p < 0.0001). The mean first flowering time is 6 days earlier in southern than northern sites, 5 days earlier under urban than rural settings, and 1 day earlier at lower than higher elevations. Compared to trees and shrubs, the largest lifeform-specific phenological shift of 32 days is found in herbs, which are generally characterized by fast turnover rates and potentially high levels of genetic adaptation. Correlated with January-April maximum temperatures at -0.81 from 1952-2019 (p < 0.0001), the observed trends (5.4 days per decade) and extremes (66 days between the earliest and latest annual mean) in the UK's first flowering dataset can affect the functioning and productivity of ecosystems and agriculture.
Department of Geography Faculty of Science Masaryk University 61300 Brno Czech Republic
Department of Geography Johannes Gutenberg University 55099 Mainz Germany
Department of Geography University of Cambridge Cambridge CB2 3EN UK
Department of Physical Geography Stockholm University 10691 Stockholm Sweden
Department of Zoology Poznań University of Life Sciences 60 625 Poznań Poland
Global Change Research Institute of the Czech Academy of Sciences 60300 Brno Czech Republic
Museum of Zoology University of Cambridge Cambridge CB2 3EN UK
Swiss Federal Research Institute 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Parker DE, Legg TP, Folland CK. 1992. A new daily central England temperature series, 1772–1991. Int. J. Climatol. 12, 317-342. (10.1002/joc.3370120402) DOI
NOAA. 2021. Global climate report for January 2021. Silver Spring, MD: NOAA.
Ciais P, et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529-533. (10.1038/nature03972) PubMed DOI
Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel J-P, Herrmann F. 2008. Death toll exceeded 70,000 in Europe during the summer of 2003. C. R. Biol. 331, 171-178. (10.1016/j.crvi.2007.12.001) PubMed DOI
Rosenzweig C, Neofotis P. 2013. Detection and attribution of anthropogenic climate change impacts. Wiley Int. Rev. Clim. Change 4, 121-150. (10.1002/wcc.209) DOI
Büntgen U, Johnson D, Gonzalez-Rouco JF, Luterbacher J, Stenseth NC. 2020. Extending the climatological concept of ‘detection and attribution’ to global change ecology in the Anthropocene. Funct. Ecol. 34, 2270-2282. (10.1111/1365-2435.13647) DOI
Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, Gehrig R, Estrella N. 2020. Climate change fingerprints in recent European plant phenology. Glob. Change Biol. 26, 2599-2612. (10.1111/gcb.15000) PubMed DOI
Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian X, Shen M, Zhu X. 2019. Plant phenology and global climate change: current progresses and challenges. Glob. Change Biol. 25, 1922-1940. (10.1111/gcb.14619) PubMed DOI
Renner SS, Zohner CM. 2018. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165-182. (10.1146/annurev-ecolsys-110617-062535) DOI
Amano T, Smithers RJ, Sparks TH, Sutherland WJ. 2010. A 250-year index of first flowering dates and its response to temperature changes. Proc. R. Soc. B 277, 2451-2457. (10.1098/rspb.2010.0291) PubMed DOI PMC
Jung S, et al. 2018. Grass pollen production and group V allergen content of agriculturally relevant species and cultivars. PLoS ONE 13, e0193958. (10.1371/journal.pone.0193958) PubMed DOI PMC
Menzel A. 2019. The allergen riddle. Nat. Ecol. Evol. 3, 716-717. (10.1038/s41559-019-0873-7) PubMed DOI
Liu Q, Fu YH, Liu Y, Janssens IA, Piao S. 2018. Simulating the onset of spring vegetation growth across the Northern Hemisphere. Glob. Change Biol. 24, 1342-1356. (10.1111/gcb.13954) PubMed DOI
Collinson N, Sparks T. 2012. Phenology – Nature's Calendar: an overview of results from the UK Phenology Network. Arboricultural J. 30, 271-278. (10.1080/03071375.2008.9747506) DOI
Hijmans RJ. 2020. raster: geographic data analysis and modeling. R package version 3.4-5.
Bivand RS, Pebesma E, Gomez-Rubio V. 2013. Applied spatial data analysis with R, 2nd edn. New York, NY: Springer.
R Core Team. 2020. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Wickham H, François R, Henry L, Müller K. 2021. dplyr: a grammar of data manipulation. R package version 1.0.6.
Dowle M, Srinivasan A. 2020. data.table: extension of ‘data.frame’. R package version 1.13.0.
Cornes R, van der Schrier G, van den Besselaar EJM, Jones PD. 2018. An ensemble vversion of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 123, 9391-9409. (10.1029/2017JD028200) DOI
Jones PD, Jónsson T, Wheeler D. 1997. Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433-1450. (10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P) DOI
Fitter AH, Fitter RSR. 2002. Rapid changes in flowering time in British plants. Science 296, 1689-1691. (10.1126/science.1071617) PubMed DOI
Anderson JT, Inouye DW, Mckinney AM, Colautti RI, Mitchell-Olds T. 2012. Phenotypic plasticity and adaptive evolution contribute to advancing flowering phenology in response to climate change. Proc. R. Soc. B 279, 3843-3852. (10.1098/rspb.2012.1051) PubMed DOI PMC
Reid PC, et al. 2016. Global impacts of the 1980s regime shift. Glob. Change Biol. 22, 682-703. (10.1111/gcb.13106) PubMed DOI PMC
Li C, Junttila O, Ernstsen A, Heino P, Palva ET. 2003. Photoperiodic control of growth, cold acclimation and dormancy development in silver birch (Betula pendula) ecotypes. Physiol. Plant. 117, 206-212. (10.1034/j.1399-3054.2003.00002.x) DOI
Keskitalo J, Bergquist G, Gardestrom P, Jansson S. 2005. A cellular timetable of autumn senescence. Plant Physiol. 139, 1635-1648. (10.1104/pp.105.066845) PubMed DOI PMC
Körner C, Basler D. 2010. Phenology under global warming. Science 327, 1461-1462. (10.1126/science.1186473) PubMed DOI
Fu YH, Piao S, Zhou X, Geng X, Hao F, Vitasse Y, Janssens IA. 2019. Short photoperiod reduces the temperature sensitivity of leaf-out in saplings of Fagus sylvatica but not in horse chestnut. Glob. Change Biol. 25, 1696-1703. (10.1111/gcb.14599) PubMed DOI
Duan J, et al. 2017. Weakening of annual temperature cycle over the Tibetan Plateau since the 1870s. Nat. Commun. 8, 14008. (10.1038/ncomms14008) PubMed DOI PMC
Williams CM, Henry HAL, Sinclair BJ. 2015. Cold truths: how winter drives responses of terrestrial organisms to climate change. Biol. Rev. 90, 214-235. (10.1111/brv.12105) PubMed DOI
Büntgen U, Krusic PJ. 2018. Non-traditional data and innovative methods for autumn climate change ecology. Clim. Res. 75, 215-220. (10.3354/cr01525) DOI
Both C, Bouwhuis S, Lessells CM, Visser ME. 2006. Climate change and population declines in a long-distance migratory bird. Nature 441, 81-83. (10.1038/nature04539) PubMed DOI
Memmott J, Craze PG, Waser NM, Price MV. 2007. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 10, 710-717. (10.1111/j.1461-0248.2007.01061.x) PubMed DOI
Canadell JG, Schulze ED. 2014. Global potential of biospheric carbon management for climate mitigation. Nat. Commun. 5, 5282. (10.1038/ncomms6282) PubMed DOI
Büntgen U, et al. 2019. Limited capacity of tree growth to mitigate the global greenhouse effect under predicted warming. Nat. Commun. 10, 2171. (10.1038/s41467-019-10174-4) PubMed DOI PMC
Friend AD, et al. 2014. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Proc. Natl Acad. Sci. USA 111, 3280-3285. (10.1073/pnas.1222477110) PubMed DOI PMC
Bradshaw CJA, Warkentin IG. 2015. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Change 128, 24-30. (10.1016/j.gloplacha.2015.02.004) DOI
Department for Environment, Food and Rural Affairs. 2021. UK biodiversity indicators in your pocket. London, UK: The Department for Environment, Food and Rural Affairs.
figshare
10.6084/m9.figshare.c.5800155