Response of Fragaria vesca to projected change in temperature, water availability and concentration of CO2 in the atmosphere

. 2023 Jul 01 ; 13 (1) : 10678. [epub] 20230701

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37393360
Odkazy

PubMed 37393360
PubMed Central PMC10314927
DOI 10.1038/s41598-023-37901-8
PII: 10.1038/s41598-023-37901-8
Knihovny.cz E-zdroje

The high rate of climate change may soon expose plants to conditions beyond their adaptation limits. Clonal plants might be particularly affected due to limited genotypic diversity of their populations, potentially decreasing their adaptability. We therefore tested the ability of a widely distributed predominantly clonally reproducing herb (Fragaria vesca) to cope with periods of drought and flooding in climatic conditions predicted to occur at the end of the twenty-first century, i.e. on average 4 °C warmer and with twice the concentration of CO2 in the air (800 ppm) than the current state. We found that F. vesca can phenotypically adjust to future climatic conditions, although its drought resistance may be reduced. Increased temperature and CO2 levels in the air had a far greater effect on growth, phenology, reproduction, and gene expression than the temperature increase itself, and promoted resistance of F. vesca to repeated flooding periods. Higher temperature promoted clonal over sexual reproduction, and increased temperature and CO2 concentration in the air triggered change in expression of genes controlling the level of self-pollination. We conclude that F. vesca can acclimatise to predicted climate change, but the increased ratio of clonal to sexual reproduction and the alteration of genes involved in the self-(in)compatibility system may be associated with reduced genotypic diversity of its populations, which may negatively impact its ability to genetically adapt to novel climate in the long-term.

Zobrazit více v PubMed

Loarie SR, et al. The velocity of climate change. Nature. 2009;462(7276):1052–1055. doi: 10.1038/nature08649. PubMed DOI

Kremer A, et al. Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 2012;15:378–392. doi: 10.1111/j.1461-0248.2012.01746.x. PubMed DOI PMC

IPCC. Climate change 2007: impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2007).

Dodd RS, Douhovnikoff V. Adjusting to global change through clonal growth and epigenetic variation. Front. Ecol. Evol. 2016;4:86. doi: 10.3389/fevo.2016.00086. DOI

Klimeš, L., Klimešová, J., Hendriks, R. J. J. & Groenendael, J. Clonal plant architecture A comparative analysis of form and function. Ecol. Evol. Clonal Plants (1997).

Van Groenendael JM, Kliimeš L, Klimešová J, Hendriks RJJ. Comparative ecology of clonal plants. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1996;351:1331–1339. doi: 10.1098/rstb.1996.0116. DOI

Ye D, et al. Clonality-climate relationships along latitudinal gradient across China: Adaptation of clonality to environments. PLoS ONE. 2014;9:e94009. doi: 10.1371/journal.pone.0094009. PubMed DOI PMC

Nicotra AB, et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010;15:684–692. doi: 10.1016/j.tplants.2010.09.008. PubMed DOI

Klimešová, J. & Klimeš, L. CLO-PLA3—a database of clonal plants in central Europe. (2006).

AR5 Synthesis Report: Climate Change 2014—IPCC. https://www.ipcc.ch/report/ar5/syr/.

Dai A. Increasing drought under global warming in observations and models. Nat. Clim. Change. 2012;3(1):52–58. doi: 10.1038/nclimate1633. DOI

Sherwood S, Fu Q. Climate change. A drier future? Science. 2014;343:737–739. doi: 10.1126/science.1247620. PubMed DOI

Ficklin DL, Novick KA. Historic and projected changes in vapor pressure deficit suggest a continental-scale drying of the United States atmosphere. J. Geophys. Res. Atmos. 2017;122:2061–2079. doi: 10.1002/2016JD025855. DOI

Seneviratne, S. I. et al. Changes in Climate Extremes and their Impacts on the Natural Physical Environment—IPCC. https://www.ipcc.ch/report/managing-the-risks-of-extreme-events-and-disasters-to-advance-climate-change-adaptation/changes-in-climate-extremes-and-their-impacts-on-the-natural-physical-environment/ (2012).

Matesanz S, Escudero A, Valladares F. Impact of three global change drivers on a Mediterranean shrub. Ecology. 2009;90:2609–2621. doi: 10.1890/08-1558.1. PubMed DOI

Cook BI, Wolkovich EM, Parmesan C. Divergent responses to spring and winter warming drive community level flowering trends. Proc. Natl. Acad. Sci. USA. 2012;109:9000–9005. doi: 10.1073/pnas.1118364109. PubMed DOI PMC

Jung JH, Seo PJ, Ahn JH, Park CM. Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J. Biol. Chem. 2012;287:16007–16016. doi: 10.1074/jbc.M111.337485. PubMed DOI PMC

Anderson JT, Gezon ZJ. Plasticity in functional traits in the context of climate change: A case study of the subalpine forb Boechera stricta (Brassicaceae) Glob. Change Biol. 2015;21:1689–1703. doi: 10.1111/gcb.12770. PubMed DOI

Anderson JT, Song BH. Plant adaptation to climate change—Where are we? J. Syst. Evol. 2020;58:533–545. doi: 10.1111/jse.12649. PubMed DOI PMC

Kelly MW, Sanford E, Grosberg RK. Limited potential for adaptation to climate change in a broadly distributed marine crustacean. Proc. R. Soc. B Biol. Sci. 2012;279:349–356. doi: 10.1098/rspb.2011.0542. PubMed DOI PMC

Dieleman WIJ, et al. Simple additive effects are rare: A quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob. Change Biol. 2012;18:2681–2693. doi: 10.1111/j.1365-2486.2012.02745.x. PubMed DOI

Arndal MF, Tolver A, Larsen KS, Beier C, Schmidt IK. Fine root growth and vertical distribution in response to elevated CO2, warming and drought in a mixed heathland-grassland. Ecosystems. 2018;21:15–30. doi: 10.1007/s10021-017-0131-2. DOI

Tallis MJ, et al. The transcriptome of Populus in elevated CO2 reveals increased anthocyanin biosynthesis during delayed autumnal senescence. New Phytol. 2010;186:415–428. doi: 10.1111/j.1469-8137.2010.03184.x. PubMed DOI

Grossman JD, Rice KJ. Contemporary evolution of an invasive grass in response to elevated atmospheric CO2 at a Mojave Desert FACE site. Ecol. Lett. 2014;17:710. doi: 10.1111/ele.12274. PubMed DOI PMC

Horgan-Kobelski T, Matesanz S, Sultan SE. Limits to future adaptation in the invasive plant Polygonum cespitosum: Expression of functional and fitness traits at elevated CO2. J. Hered. 2016;107:42–50. doi: 10.1093/jhered/esv070. PubMed DOI

Watson-Lazowski A, et al. Plant adaptation or acclimation to rising CO2? Insight from first multigenerational RNA-Seq transcriptome. Glob. Change Biol. 2016;22:3760–3773. doi: 10.1111/gcb.13322. PubMed DOI

Marques I, et al. Transcriptomic leaf profiling reveals differential responses of the two most traded coffee species to elevated [CO2] Int. J. Mol. Sci. 2020;21:9211. doi: 10.3390/ijms21239211. PubMed DOI PMC

Hilmarsson HS, et al. Population genetic analysis of a global collection of Fragaria vesca using microsatellite markers. PLoS ONE. 2017;12:e0183384. doi: 10.1371/journal.pone.0183384. PubMed DOI PMC

Schulze J, Rufener R, Erhardt A, Stoll P. The relative importance of sexual and clonal reproduction for population growth in the perennial herb Fragaria vesca. Popul. Ecol. 2012;54(3):369–380. doi: 10.1007/s10144-012-0321-x. DOI

Urrutia M, Bonet J, Arús P, Monfort A. A near-isogenic line (NIL) collection in diploid strawberry and its use in the genetic analysis of morphologic, phenotypic and nutritional characters. TAG Theor. Appl. Genet. Theor. Angew. Genet. 2015;128:1261–1275. doi: 10.1007/s00122-015-2503-3. PubMed DOI

Wild J, et al. Climate at ecologically relevant scales: A new temperature and soil moisture logger for long-term microclimate measurement. Agric. For. Meteorol. 2019;268:40–47. doi: 10.1016/j.agrformet.2018.12.018. DOI

Maxwell K, Johnson GN. Chlorophyll fluorescence--a practical guide. J. Exp. Bot. 2000;51(345):659–668. doi: 10.1093/jexbot/51.345.659. PubMed DOI

Tang Y, et al. Heat stress induces an aggregation of the light-harvesting complex of photosystem II in spinach plants. Plant Physiol. 2007;143:629. doi: 10.1104/pp.106.090712. PubMed DOI PMC

Jahns P, Holzwarth AR. The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim. Biophys. Acta. 2012;1817:182–193. doi: 10.1016/j.bbabio.2011.04.012. PubMed DOI

Opti-Sciences. CCM-300 Chlorophyll Content Meter. (2011).

Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinform. Oxf. Engl. 2016;32:3047–3048. doi: 10.1093/bioinformatics/btw354. PubMed DOI PMC

Dobin A, et al. STAR: Ultrafast universal RNA-seq aligner. Bioinform. Oxf. Engl. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC

Kovaka S, et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 2019;20:1–13. doi: 10.1186/s13059-019-1910-1. PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC

Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for comparing biological themes among gene clusters. Omics J. Integr. Biol. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC

Asif R, et al. Phytohormones as plant growth regulators and safe protectors against biotic and abiotic stress. Plant Horm. Recent Adv. New Perspect. Appl. 2022 doi: 10.5772/INTECHOPEN.102832. DOI

Schmidt SB, Eisenhut M, Schneider A. Chloroplast transition metal regulation for efficient photosynthesis. Trends Plant Sci. 2020;25:817–828. doi: 10.1016/j.tplants.2020.03.003. PubMed DOI

Miricescu A, Goslin K, Graciet E. Ubiquitylation in plants: Signaling hub for the integration of environmental signals. J. Exp. Bot. 2018;69:4511–4527. doi: 10.1093/jxb/ery165. PubMed DOI

Parthasarathy A, et al. A three-ring circus: Metabolism of The three proteogenic aromatic amino acids and their role in the health of plants and animals. Front. Mol. Biosci. 2018;5:29. doi: 10.3389/fmolb.2018.00029. PubMed DOI PMC

Sugiura D, Kojima M, Sakakibara H. Phytohormonal regulation of biomass allocation and morphological and physiological traits of leaves in response to environmental changes in Polygonum cuspidatum. Front. Plant Sci. 2016;7:1189. doi: 10.3389/fpls.2016.01189. PubMed DOI PMC

Miller-Rushing AJ, Inouye DW. Variation in the impact of climate change on flowering phenology and abundance: An examination of two pairs of closely related wildflower species. Am. J. Bot. 2009;96:1821–1829. doi: 10.3732/ajb.0800411. PubMed DOI

Reyer CPO, et al. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability. Glob. Change Biol. 2013;19:75–89. doi: 10.1111/gcb.12023. PubMed DOI PMC

Büntgen U, et al. Plants in the UK flower a month earlier under recent warming. Proc. R. Soc. B. 2022;289:20212456. doi: 10.1098/rspb.2021.2456. PubMed DOI PMC

Jagadish SVK, et al. Implications of high temperature and elevated CO2on flowering time in plants. Front. Plant Sci. 2016;7:913. doi: 10.3389/fpls.2016.00913. PubMed DOI PMC

Johnston A, Reekie E. Regardless of whether rising atmospheric carbon dioxide levels increase air temperature, flowering phenology will be affected. Int. J. Plant Sci. 2008;169:1210–1218. doi: 10.1086/591978. DOI

Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB. Diverse responses of phenology to global changes in a grassland ecosystem. Proc. Natl. Acad. Sci. USA. 2006;103:13740–13744. doi: 10.1073/pnas.0600815103. PubMed DOI PMC

Memmott J, Craze PG, Waser NM, Price MV. Global warming and the disruption of plant-pollinator interactions. Ecol. Lett. 2007;10:710–717. doi: 10.1111/j.1461-0248.2007.01061.x. PubMed DOI

Xie Q, et al. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature. 2002;419:167–170. doi: 10.1038/nature00998. PubMed DOI

Ainsworth EA, Long SP. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? Glob. Change Biol. 2021;27:27–49. doi: 10.1111/gcb.15375. PubMed DOI

Aoyama S, Lu Y, Yamaguchi J, Sato T. Regulation of senescence under elevated atmospheric CO2 via ubiquitin modification. Plant Signal. Behav. 2014;9:e28839. doi: 10.4161/psb.28839. PubMed DOI PMC

Ahammed GJ, Guang Y, Yang Y, Chen J. Mechanisms of elevated CO2-induced thermotolerance in plants: The role of phytohormones. Plant Cell Rep. 2021;40:2273–2286. doi: 10.1007/s00299-021-02751-z. PubMed DOI

Huang Y, et al. Warming and elevated CO2 alter the transcriptomic response of maize (Zea mays L.) at the silking stage. Sci. Rep. 2019;9:17948. doi: 10.1038/s41598-019-54325-5. PubMed DOI PMC

Ghannoum O, Von Caemmerer S, Ziska LH, Conroy JP. The growth response of C4 plants to rising atmospheric CO2 partial pressure: A reassessment. Plant Cell Environ. 2000;23:931–942. doi: 10.1046/j.1365-3040.2000.00609.x. DOI

Kiirats O, Lea PJ, Franceschi VR, Edwards GE. Bundle sheath diffusive resistance to CO2 and effectiveness of C4 photosynthesis and refixation of photorespired CO2 in a C4 cycle mutant and wild-type Amaranthus edulis. Plant Physiol. 2002;130:964. doi: 10.1104/pp.008201. PubMed DOI PMC

Cabrillac D, Cock JM, Dumas C, Gaude T. The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins. Nature. 2001;410:220–223. doi: 10.1038/35065626. PubMed DOI

Doucet J, Lee HK, Goring DR. Pollen acceptance or rejection: A tale of two pathways. Trends Plant Sci. 2016;21:1058–1067. doi: 10.1016/j.tplants.2016.09.004. PubMed DOI

Kodera C, et al. The molecular signatures of compatible and incompatible pollination in Arabidopsis. BMC Genomics. 2021;22:1–18. doi: 10.1186/s12864-021-07503-7. PubMed DOI PMC

Levin DA. Mating system shifts on the trailing edge. Ann. Bot. 2012;109:613–620. doi: 10.1093/aob/mcr159. PubMed DOI PMC

Dolezal J, Kurnotova M, Stastna P, Klimesova J. Alpine plant growth and reproduction dynamics in a warmer world. New Phytol. 2020;228:1295–1305. doi: 10.1111/nph.16790. PubMed DOI

Root TL, et al. Fingerprints of global warming on wild animals and plants. Nature. 2003;421(6918):57–60. doi: 10.1038/nature01333. PubMed DOI

Jump AS, Marchant R, Peñuelas J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 2009;14:51–58. doi: 10.1016/j.tplants.2008.10.002. PubMed DOI

Cobben MMP, et al. Projected climate change causes loss and redistribution of genetic diversity in a model metapopulation of a medium-good disperser. Ecography. 2011;34:920–932. doi: 10.1111/j.1600-0587.2011.06713.x. DOI

Cowan, I. R. Economics of carbon fixation in higher plants. Econ. Carbon Fixat. High. Plants 133–170 (1986).

Duan H, et al. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ. 2014;37:1598–1613. doi: 10.1111/pce.12260. PubMed DOI

Bartholomeus RP, Witte JPM, van Bodegom PM, van Dam JC, Aerts R. Critical soil conditions for oxygen stress to plant roots: Substituting the Fedds-function by a process-based model. J. Hydrol. 2008;360:147–165. doi: 10.1016/j.jhydrol.2008.07.029. DOI

Bailey-Serres J, Colmer TD. Plant tolerance of flooding stress–recent advances. Plant Cell Environ. 2014;37:2211–2215. PubMed

Ainsworth EA, Long SP. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol. 2005;165:351–372. doi: 10.1111/j.1469-8137.2004.01224.x. PubMed DOI

Kozlowski TT. Responses of woody plants to flooding and salinity. Tree Physiol. 1997;17:490–490. doi: 10.1093/treephys/17.7.490. DOI

Klimešová J, Herben T. Clonal and bud bank traits: Patterns across temperate plant communities. J. Veg. Sci. 2015;26:243–253. doi: 10.1111/jvs.12228. DOI

Onoda Y, Hirose T, Hikosaka K. Does leaf photosynthesis adapt to CO2-enriched environments? An experiment on plants originating from three natural CO2 springs. New Phytol. 2009;182:698–709. doi: 10.1111/j.1469-8137.2009.02786.x. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...