Alpine plant growth and reproduction dynamics in a warmer world
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32632948
DOI
10.1111/nph.16790
Knihovny.cz E-zdroje
- Klíčová slova
- climate warming, clonal plants, elevation gradient, flowering, growth, long-term response, rhizome, spatiotemporal dynamics,
- MeSH
- klimatické změny * MeSH
- květy * MeSH
- roční období MeSH
- rozmnožování MeSH
- teplota MeSH
- vývoj rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Climate warming may stimulate growth and reproduction in cold-adapted plants, but also reduce their performance due to warming-induced drought limitation. We tested this theory using a unique experiment with the alpine forb Rumex alpinus. We examined how climate warming over the past four decades affected its annual rhizome growth, leaf production and flowering, and whether responses varied between alpine, subalpine and montane populations. Before the period of accelerated warming in the 1970s and 1980s, the primary limitation on growth had been cold temperatures and short growing seasons. Increased summer temperatures in the 1990s and 2000s enhanced rhizome growth and leaf production, but not flowering. Alpine and subalpine plants profit more than montane plants, currently producing three times longer annual rhizome increments and twice as many leaves as 40 yr ago, and achieving nearly the same values as montane plants. During the warmest 2005-2015 period, growth became contingent on summer precipitation and began to decrease across all populations, likely due to an increasing water shortage in dense monospecific stands. Warming releases plants from cold limitations but induces water shortage. Rumex alpinus exceeds its thermal optimum and becomes water-limited as the climate warms. Our results suggest that warming-induced responses in alpine plants will not be one-sided shifts to higher growth and reproduction, but rather multidimensional and spatiotemporally variable.
Institute of Botany of the Czech Academy of Science Dukelská 135 Třeboň CZ 379 01 Czech Republic
Krkonoše Mts National Park Administration Dobrovského 3 Vrchlabí CZ 543 01 Czech Republic
Zobrazit více v PubMed
Abatzoglou J, Dobrowski S, Parks S, Hegewisch KC. 2018. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Scientific Data 5: 170191.
Aerts R, Callaghan TV, Dorrepaal E, van Logtestijn RSP, Cornelissen JHC. 2012. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species. Oecologia 170: 809-819.
von Arx G, Archer SR, Hughes MK. 2012. Long-term functional plasticity in plant hydraulic architecture in response to supplemental moisture. Annals of Botany 109: 1091-1100.
von Arx G, Edwards PJ, Dietz H. 2006. Evidence for life history changes in high-altitude populations of three perennial forbs. Ecology 87: 665-674.
Babst F, Bouriaud O, Poulter B, Trouet V, Girardin MP, Frank DC. 2019. Twentieth century redistribution in climatic drivers of global tree growth. Science Advances 5: eaat4313.
Bär A, Pape R, Bräuning A, Lőffler J. 2008. Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences. Journal of Biogeography 35: 625-636.
Bienau MJ, Hattermann D, Kröncke M, Kretz L, Otte A, Eiserhardt WL, Milbau A, Graae BJ, Durka W, Eckstein RL. 2014. Snow cover consistently affects growth and reproduction of Empetrum hermaphroditum across latitudinal and local climatic gradients. Alpine Botany 124: 115-129.
Billings WD, Mooney HA. 1968. Ecology of arctic and alpine plants. Biological reviews of the Cambridge Philosophical Society 43: 481-529.
Bohner A. 2005. Rumicetum alpini Beger 1922 - species composition, soil-chemical properties, and mineral element content. Wulfenia 12: 113-126.
Büntgen U, Hellmann L, Tegel W, Normand S, Myers-Smith I, Kirdyanov AV, Schweingruber FH. 2015. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. Journal of Ecology 103: 489-501.
Buras A, Wilmking M. 2015. Correcting the calculation of Gleichläufigkeit. Dendrochronologia 34: 29-30.
Campelo F, García-González I, Nabais C. 2012. detrendeR - a Graphical User Interface to process and visualize tree-ring data using R. Dendrochronologia 30: 57-60.
Cannone N, Sgorbati S, Guglielmin M. 2007. Unexpected impacts of climate change on alpine vegetation. Frontiers in Ecology and the Environment 5: 360-364.
Dawes MA, Schleppi P, Hättenschwiler S, Rixen C, Hagedorn F. 2017. Soil warming opens the nitrogen cycle at the alpine treeline. Global Change Biology 23: 421-434.
Dee JR, Adams HD, Palmer MW. 2018. Belowground annual ring growth coordinates with aboveground phenology and timing of carbon storage in two tallgrass prairie forb species. American Journal of Botany 105: 1975-1985.
Dee JR, Palmer MW. 2016. Application of herbchronology: annual fertilization and climate reveal annual ring signatures within the roots of US tallgrass prairie plants. Botany-Botanique 94: 277-288.
Dee JR, Stambaugh MC. 2019. A new approach towards climate monitoring in Rocky Mountain alpine plant communities: a case study using herb-chronology and Penstemon whippleanus. Arctic, Antarctic, and Alpine Research 51: 84-95.
Delnevo N, Petraglia A, Carbognani M, Vandvik V, Halbritter AH. 2018. Plastic and genetic responses to shifts in snowmelt time affects the reproductive phenology and growth of Ranunculus acris. Perspectives in Plant Ecology, Evolution and Systematics 30: 62-70.
Dolezal J, Dvorský M, Borner A, Wild J, Schweingruber FH. 2018. Anatomy, age and ecology of high-mountain plants in Ladakh, the Western Himalaya. Berlin/Heidelberg, Germany: Springer-Verlag.
Dolezal J, Dvorsky M, Kopecky M, Liancourt P, Hiiesalu I, Macek M, Altman J, Chlumska Z, Rehakova K, Capkova K et al. 2016. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Scientific Reports 6: 24881.
Dolezal J, Kopecky M, Dvorsky M, Macek M, Rehakova K, Capkova K, Borovec J, Schweingruber F, Liancourt P, Altman J. 2019. Sink limitation of plant growth determines treeline in the arid Himalayas. Functional Ecology 33: 553-565.
Dolezal J, Srutek M. 2002. Altitudinal changes in composition and structure of mountain-temperate vegetation: a case study from the Western Carpathians. Plant Ecology 158: 201-221.
Francon L, Corona C, Till-Bottraud I, Carlson BZ, Stoffel M. 2020. Some (do not) like it hot: shrub growth is hampered by heat and drought at the alpine treeline in recent decades. American Journal of Botany 107: 1-11.
Franklin RS. 2013. Growth response of the alpine shrub, Linanthus pungens, to snowpack and temperature at a rock glacier site in the eastern Sierra Nevada of California, USA. Quaternary international 310: 20-33.
Gärtner H, Schweingruber FH. 2013. Microscopic preparation techniques for plant stem analysis. Remagen, Germany: Verlag Dr. Kessel.
Gottfried M, Pauli H, Futschik A, Akhalkatsi M, Barančok P, Alonso JLB, Coldea G, Dick J, Erschbamer B, Kazakis G et al. 2012. Continent-wide response of mountain vegetation to climate change. Nature Climate Change 2: 111-115.
Hallinger M, Manthey M, Wilmking M. 2010. Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia. New Phytologist 186: 890-899.
Harsch MA, Hulme PE, McGlone MS, Duncan RP. 2009. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecology Letters 12: 1040-1049.
Inouye DW. 2008. Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89: 353-362.
Inouye DW, Morales MA, Dodge GJ. 2002. Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Nina, in the context of climate change. Oecologia 130: 543-550.
Jonas T, Rixen C, Sturm M, Stoeckli V. 2008. How alpine plant growth is linked to snow cover and climate variability. Journal of Geophysical Research: Biogeosciences 113: 377.
Klimeš L. 1992. The clone architecture of Rumex alpinus (Polygonaceae). Oikos 63: 402-409.
Klimeš L, Klimešová J, Osbornová J. 1993. Regeneration capacity and carbohydrate reserves in a clonal plant Rumex alpinus: effect of burial. Vegetatio 109: 153-160.
Klimešová J, Doležal J, Šťastná P. 2013. Growth of the alpine herb Rumex alpinus over two decades: effect of climate fluctuations and local conditions. Plant Ecology 213: 1071-1084.
Klimešová J, Martínková J, Pausas JG, de Moraes MG, Herben T, Yu FH, Puntieri J, Vesk PA, de Bello F, Janeček S et al. 2019. Handbook of standardized protocols for collecting plant modularity traits. Perspectives in Plant Ecology, Evolution and Systematics 40: 125485.
Körner C. 2003. Alpine plant life. Berlin/Heidelberg, Germany: Springer-Verlag.
Körner C, Riedl S, Keplinger T, Richter A, Wiesenbauer J, Schweingruber F, Hiltbrunner E. 2019. Life at 0°C: the biology of the alpine snowbed plant Soldanella pusilla. Alpine Botany 129: 63-80.
Lambert AM, Miller-Rushing AJ, Inouye DW. 2010. Changes in snowmelt date and summer precipitation affect the flowering phenology of Erythronium grantiflorum (Glacier lily; Liliaceae). American Journal of Botany 97: 1431-1437.
Liancourt P, Spence LA, Song DS, Lkhagva A, Sharkhuu A, Boldgiv B, Helliker BR, Petraitis PS, Casper BB. 2013. Plant response to climate change varies with topography, interactions with neighbors, and ecotype. Ecology 94: 444-453.
Lubbe FC, Henry HAL. 2020. The role of perennation traits in plant community soil frost stress responses. Annals of Botany. doi: https://doi.org/10.1093/aob/mcaa104.
Myers-Smith IH, Hik DS. 2018. Climate warming as a driver of tundra shrubline advance. Journal of Ecology 106: 547-560.
Myers-Smith IH, Kerby JT, Phoenix GK, Bjerke JW, Epstein HE, Assmann JJ, John C, Andreu-Hayles L, Angers-Blondin S, Beck PSA et al. 2020. Complexity revealed in the greening of the Arctic. Nature Climate Change 10: 106-117.
Olano JM, Almería I, Eugenio M, von Arx G, Tjoelker M. 2013. Under pressure: how a Mediterranean high-mountain forb coordinates growth and hydraulic xylem anatomy in response to temperature and water constraints. Functional Ecology 27: 1295-1303.
Pardee G, Jensen IO, Inouye DW, Irwin RE. 2019. The individual and combined effects of snowmelt timing and frost exposure on the reproductive success of montane forbs. Journal of Ecology 107: 1970-1981.
Pepin N, Bradley R, Diaz H, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD et al. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5: 424-430.
Rehder H. 1971. Zum Stickstoffhaushalt alpiner Rasengesellschaften. Berichte der Deutschen Botanischen Gesellschaft 84: 759-767.
Rehder H. 1982. Nitrogen relations of ruderal communities (Rumicion alpini) in the northern calcareous Alps. Oecologia 55: 120-129.
Rundqvist S, Hedenas H, Sandstrom A, Emanuelsson U, Eriksson H, Jonasson C, Callaghan TV. 2011. Tree and shrub expansion over the past 34 years at the tree-line near Abisko, Sweden. Ambio 40: 683-692.
Scherrer D, Körner C. 2011. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38: 406-416.
Schmidt NM, Baittinger C, Kollmann J, Forchhammer MC. 2010. Consistent dendrochronological response of the dioecious Salix arctica to variation in local snow precipitation across gender and vegetation types. Artic, Antarctic, and Alpine Research 42: 471-475.
Schweingruber F, Kucerova A, Adamec L, Dolezal J. 2020. Anatomic atlas of aquatic and wetland plant stems. Berlin/Heidelberg, Germany: Springer-Verlag.
Shi S, Li Z, Wang H, von Arx G, Lü Y, Wu X, Wang X, Liu G, Fu B. 2016. Roots of forbs sense climate fluctuations in the semi-arid Loess Plateau: herb-chronology based analysis. Scientific Reports 6: 28435.
Stachurska-Swakoń A. 2009. Syntaxonomical revision of the communities with Rumex alpinus L. in the Carpathians. Phytocoenologia 39: 217-234.
Šťastná P, Klimeš L, Klimešová J. 2010. Biological flora of Central Europe: Rumex alpinus. Perspectives in Plant Ecology, Evolution and Systematics 12: 67-79.
Šťastná P, Klimešová J, Doležal J. 2012. Altitudinal changes in growth performance and allometry of Rumex alpinus. Alpine Botany 122: 35-44.
Steinbauer MJ, Grytnes JA, Jurasinski G, Kulonen A, Lenoir J, Pauli H, Rixen C, Winkler M, Bardy-Durchhalter M, Barni E et al. 2018. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556: 231-234.
Thorn S, Müller J, Leverkus AB. 2019. Preventing European forest diebacks. Science 365: 1388.
Weijers S, Alsos IG, Eidesen PB, Broekman R, Loonen MJJE, Rozema J. 2012. No divergence in Cassiope tetragona: persistence of growth response along a latitudinal temperature gradient and under multi-year experimental warming. Annals of Botany 110: 653-665.
Wilmanns O. 1998. Okologische pflanzensoziologie. Wiesbaden, Germany: Quelle & Meyer Verlag.
Wipf S, Stoeckli V, Bebi P. 2009. Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Climatic Change 94: 105-121.
Zang C, Biondi F. 2013. Dendroclimatic calibration in R: the bootRes package for response and correlation function analysis. Dendrochronologia 31: 68-74.
Ecological Implications of Germination Temperature on Native and Invasive Rumex Spp