Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27071305
PubMed Central
PMC4829891
DOI
10.1038/srep24440
PII: srep24440
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- fyziologie rostlin * MeSH
- nadmořská výška * MeSH
- podnebí MeSH
- roční období MeSH
- zahradničení * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tibet MeSH
Vascular plants in the western Tibetan Plateau reach 6000 m--the highest elevation on Earth. Due to the significant warming of the region, plant ranges are expected to shift upwards. However, factors governing maximum elevational limits of plant are unclear. To experimentally assess these factors, we transplanted 12 species from 5750 m to 5900 m (upper edge of vegetation) and 6100 m (beyond range) and monitored their survival for six years. In the first three years (2009-2012), there were plants surviving beyond the regional upper limit of vegetation. This supports the hypothesis of dispersal and/or recruitment limitation. Substantial warming, recorded in-situ during this period, very likely facilitated the survival. The survival was ecologically a non-random process, species better adapted to repeated soil freezing and thawing survived significantly better. No species have survived at 6100 m since 2013, probably due to the extreme snowfall in 2013. In conclusion, apart from the minimum heat requirements, our results show that episodic climatic events are decisive determinants of upper elevational limits of vascular plants.
Department of Botany Faculty of Science Charles University Benátská 2 Praha CZ 128 01 Czech Republic
Department of Botany University of South Bohemia České Budějovice Czech Republic
Department of Ecosystem Biology University of South Bohemia České Budějovice Czech Republic
Institute of Botany The Czech Academy of Sciences Průhonice Czech Republic
Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
Zobrazit více v PubMed
Chen I. C., Hill J. K., Ohlemüller R., Roy D. B. & Thomas C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011). PubMed
Dullinger S. et al. Extinction debt of high-mountain plants under twenty first-century climate change. Nat. Clim. Change 2, 619–622 (2012).
Gottfried M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change 2, 111–115 (2012).
Pauli H. et al. Recent plant diversity changes on Europe’s mountain summits. Science 336, 353–355 (2012). PubMed
Grytnes J. A. et al. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol. Biogeogr. 23, 876–884 (2014).
Körner C. (2003) Alpine plant life (Springer, 2003).
Körner C. Coldest places on earth with angiosperm plant life. Alp. Bot. 121, 11–22 (2011).
Klimeš L. & Doležal J. An experimental assessment of the upper elevational limit of flowering plants in the Western Himalayas. Ecography 33, 590–596 (2010).
Dvorský M., Doležal J., de Bello F., Klimešová J. & Klimeš L. Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Appl. Veg. Sci. 14, 132–147 (2011).
Dvorský M. et al. Vascular plants at extreme elevations in eastern Ladakh, north-west Himalayas. Plant Ecol. Divers. 8, 571–584 (2015).
Miehe G. Der Himalaya, eine multizonale Gebirgsregion in Ökologie der gemäβigten und arktischen Zonen auβerhalb Euro-Nordasiens (eds. Walter H. & Breckle S. ) 181–230 (Gustav Fischer, 1991).
Bhutiyani M. R., Kale V. S. & Pawar N. J. Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim. Change 85, 159–177 (2007).
Shrestha U. B., Gautam S. & Bawa K. S. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLos ONE 7, e36741 10.1371/journal.pone.0036741 (2012). PubMed DOI PMC
Yue T. et al. Climate change trend in China, with improved accuracy. Clim. Change 120, 137–151 (2013).
Nogués-Bravo D., Araújo M. B., Errea M. P. & Martínez-Rica J. P. Exposure of global mountain systems to climate warming during the 21st century. Glob. Environ. Change 17, 420–428 (2006).
Qin J., Yang K., Liang S. & Guo X. The altitudinal dependence of recent rapid warming over the Tibetan Plateau. Clim. Change 97, 321–327 (2009).
Schmidt S. & Nüsser M. Changes of high altitude glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, northwest India. Arct. Antarct. Alp. Res. 44, 107–121 (2012).
Archer D. R. & Fowler H. J. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8, 47–61 (2004).
Shi Y. et al. Recent and future climate change in Northwest China. Clim. Change 80, 379–393 (2007).
Kulkarni A., Patwardhan S., Kumar K. K., Ashok K. & Krishan R. Projected climate change in the Hindu Kush-Himalayan region by using the high-resolution regional climate model PRECIS. Mt. Res. Dev. 33, 142–151 (2013).
Palazzi E., von Hardenberg J. & Provenzale A. Precipitation in the Hindu-Kush Karakoram Himalaya: Observations and future scenarios. J. Geophys. Res. Atmos. 118, 85–100 (2013).
Rajbhandari R. et al. Projected changes in climate over the Indus river basin using a high resolution regional climate model (PRECIS). Clim. Dynam. 44, 339–357 (2015).
Bhutiyani M. R., Kale V. S. & Pawar N. J. Climate change and the precipitation variations in the northwestern Himalaya: 1866–2006. Int. J. Climatol. 30, 535–548 (2010).
Das P. K. Spatial analysis of temporal trend of rainfall and rainy days during the Indian Summer Monsoon season using daily gridded (0.5 degrees × 0.5 degrees) rainfall data for the period of 1971–2005. Meteorol. Appl. 21, 481–493 (2014).
Jain S. K. & Vijay K. Trend analysis of rainfall and temperature data for India. Curr. Sci. 102, 37–49 (2012).
Singh R. B. & Mal S. Trends and variability of monsoon and other rainfall seasons in Western Himalaya, India. Atmos. Sci. Lett. 15, 218–226 (2014).
Hartmann H. & Buchanan H. Trends in extreme precipitation events in the Indus River Basin and flooding in Pakistan. Atmos. Ocean 52, 77–91 (2014).
Cannon F., Carvalho L. M. V., Jones C. & Bookhagen B. Multi-annual variations in winter westerly disturbance activity affecting the Himalaya. Clim. Dynam. 44, 441–455 (2014).
Madhura R. K., Krishan R., Revadekar J. V., Mujumdar M. & Goswami B. N. Changes in western disturbances over the Western Himalayas in a warming environment. Clim. Dynam. 44, 1157–1168 (2015).
Yadav R. K., Yoo J. H., Kucharski F. & Abid M. A. Why is ENSO influencing northwest India winter precipitation in recent decades? J. Climate 23, 1979–1993 (2010).
Tahir A. A. et al. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). Sci. Total Environ. 505, 748–761 (2015). PubMed
Bhan S. C., Devrani A. K. & Sinha V. An analysis of monthly rainfall and the meteorological conditions associated with cloudburst over the dry region of Leh (Ladakh), India. Mausam 66, 107–122 (2015).
Crimmins S. M. et al. Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations. Science 331, 324–327 (2011). PubMed
Hargreaves A. L., Samis K. E. & Eckert C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014). PubMed
Pulliam H. R. Sources, sinks, and population regulation. Am. Nat. 132, 652–661 (1988).
Ertl S. Positive effects of an extremely hot summer on propagule rain in upper alpine to subnival habitats of the Central Eastern Alps. Plant Ecol. Divers. 6, 467–474 (2013).
Morecroft M. D. & Woodward F. I. Experiments on the causes of altitudinal differences in the leaf nutrient contents, size and δC of Alchemilla alpina. New Phytol. 134, 471–479 (1996).
Macek P. et al. Plant nutrient content does not simply increase with elevation under the extreme environmental conditions of Ladakh, NW Himalaya. Arct. Antarct. Alp. Res. 44, 62–66 (2012).
Dullinger S. & Hülber K. Experimental evaluation of seed limitation in alpine snowbed plants. PLos ONE 6, e21537 10.1371/journal.pone.0021537 (2011). PubMed DOI PMC
Klanderud K. & Totland Ø. The relative role of dispersal and local interactions for alpine plant community diversity under simulated climate warming. Oikos 116, 1279–1288 (2007).
Schupp E. W. Seed-seedling conflicts, habitat choice, and patterns of plant recruitment. Am. J. Bot. 399–409 (1995).
Graae B. J. et al. Strong microsite control of seedling recruitment in tundra. Oecologia 166, 565–576 (2011). PubMed PMC
Gaston K. J. Geographic range limits: achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009). PubMed PMC
Abeli T., Rossi G., Gentili R., Mondoni A. & Cristofanelli P. Response of alpine plant flower production to temperature and snow cover fluctuation at the species range boundary. Plant Ecol. 213, 1–13 (2012).
Telwala Y., Brook B. W., Manish K. & Pandit M. K. Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLos ONE 8, e57103 10.1371/journal.pone.0057103 (2013). PubMed DOI PMC
Klimešová J., Doležal J., Dvorský M. & de Bello F. Clonal growth forms in eastern Ladakh, Western Himalayas: classification and habitat preferences. Folia Geobot. 46, 191–217 (2011).
Neuner G. & Hacker J. Ice formation and propagation in alpine plants in Plants in alpine regions: cell physiology of adaption and survival strategies (ed. Lütz C. ). 163–174 (Springer, 2012).
Normand S., Treier U. A., Randin C., Vittoz P., Guisan A. & Svenning J. C. Importance of abiotic stress as a range-limit determinant for European plants: insights from species responses to climatic gradients. Glob. Ecol. Biogeogr. 18, 437–449 (2009).
Holt R. D. & Keitt T. H. Alternative causes for range limits: a metapopulation perspective. Ecol. Lett. 3, 41–47 (2000).
Harris N. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr. Palaeocl. 241, 4–15 (2006).
Řeháková K., Chlumská Z. & Doležal J. Soil cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to site, altitude, and vegetation. Microb. Ecol. 62, 337–346 (2011). PubMed
Janatková K. et al. Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environ. Microbiol. 15, 2505–2516 (2013). PubMed
Chlumská Z. Functional traits of high-altitude plants in Eastern Ladakh (NW Himalayas) (M.Sc. Thesis, Faculty of Sciences, University of South Bohemia, Czech Republic, 2011).
Cornelissen J. H. C. et al. A handbook of protocols for standardised and easy measurements of plant functional traits worldwide. Austr. J. Bot. 51, 335–380 (2003).
Bates D., Maechler M., Bolker B. & Walker D. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
Early Evidence of Shifts in Alpine Summit Vegetation: A Case Study From Kashmir Himalaya
Fungal root symbionts of high-altitude vascular plants in the Himalayas