Early Evidence of Shifts in Alpine Summit Vegetation: A Case Study From Kashmir Himalaya
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32391033
PubMed Central
PMC7194130
DOI
10.3389/fpls.2020.00421
Knihovny.cz E-zdroje
- Klíčová slova
- Himalaya, alpine ecosystem, climate change, mountain summits, species richness, thermophilization, β-diversity,
- Publikační typ
- časopisecké články MeSH
Under the contemporary climate change, the Himalaya is reported to be warming at a much higher rate than the global average. However, little is known about the alpine vegetation responses to recent climate change in the rapidly warming Himalaya. Here we studied vegetation dynamics on alpine summits in Kashmir Himalaya in relation to in situ measured microclimate. The summits, representing an elevation gradient from treeline to nival zone (3530-3740 m), were first surveyed in 2014 and then re-surveyed in 2018. The initial survey showed that the species richness, vegetation cover and soil temperature decreased with increasing elevation. Species richness and soil temperature differed significantly among slopes, with east and south slopes showing higher values than north and west slopes. The re-survey showed that species richness increased on the lower three summits but decreased on the highest summit (nival zone) and also revealed a substantial increase in the cover of dominant shrubs, graminoids, and forbs. The nestedness-resultant dissimilarity, rather than species turnover, contributed more to the magnitude of β-diversity among the summits. High temporal species turnover was found on south and east aspects, while high nestedness was recorded along north and west aspects. Thermophilization was more pronounced on the lower two summits and along the northern aspects. Our study provides crucial scientific data on climate change impacts on the alpine vegetation of Kashmir Himalaya. This information will fill global knowledge gaps from the developing world.
Centre for Biodiversity and Taxonomy Department of Botany University of Kashmir Srinagar India
Faculty of Science Department of Botany University of South Bohemia České Budějovice Czechia
Institute of Botany The Czech Academy of Sciences Pruhonice Czechia
Space Applications Centre Indian Space Research Organization Ahmedabad India
Zobrazit více v PubMed
Alexander J. M., Diez J. M., Levine J. M. (2015). Novel competitors shape species’ responses to climate change. Nature 525 515–518. 10.1038/nature14952 PubMed DOI
Anthelme F., Jacobsen D., Macek P., Meneses R. I., Moret P., Beck S., et al. (2014). Biodiversity patterns and continental insularity in the tropical high Andes. Arctic Antarctic Alp. Res. 46 811–828. 10.1657/1938-4246-46.4.811 DOI
Archer D. R., Fowler H. J. (2004). Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8 47–61. 10.5194/hess-8-47-2004 DOI
Baselga A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecol. Biogeogr. 21 1223–1232. 10.1111/j.1466-8238.2011.00756.x DOI
Baselga A., Orme C. D. L. (2012). betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3 808–812. 10.1111/j.2041-210X.2012.00224.x DOI
Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. (2012). Impacts of climate change on the future of biodiversity. Ecol. Lett. 15 365–377. 10.1111/j.1461-0248.2011.01736.x PubMed DOI PMC
Bertrand R., Lenoir J., Piedallu C., Riofrío-Dillon G., de Ruffray P., Vidal C., et al. (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature 479 517–520. 10.1038/nature10548 PubMed DOI
Borgaonkar H. P., Pant G. B. (2001). Long-term climate variability over monsoon Asia as revealed by some proxy sources. Mausam 52 9–22.
Bruun H. H., Moen J., Virtanen R., Grytnes J. A., Oksanen L., Angerbjörn A. (2006). Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17 37–46. 10.1111/j.1654-1103.2006.tb02421.x DOI
Callaway R. M., Brooker R. W., Choler P., Kikvidze Z., Lortie C. J., Michalet R., et al. (2002). Positive interactions among alpine plants increase with stress. Nature 417 844–848. 10.1038/nature00812 PubMed DOI
Chen I. C., Hill J. K., Ohlemüller R., Roy D. B. (2011). Rapid range shifts of species associated with high levels of climate warming. Science 333 1024–1026. 10.1126/science.1206432 PubMed DOI
Chersich S., Rejšek K., Vranová V., Bordoni M., Meisina C. (2015). Climate change impacts on the Alpine ecosystem: an overview with focus on the soil – a review. J. For. Sci. 61 496–514. 10.17221/47/2015-JFS DOI
Dar G. H., Khuroo A. A. (2013). Floristic diversity in Kashmir Himalaya: progress, problems and prospects. Sains Malays 42 1377–1386.
De Frenne P., Rodríguez-Sánchez F., Coomes D. A., Baeten L., Verstraeten G., Vellend M., et al. (2013). Microclimate moderates plant responses to macroclimate warming. Proc. Natl. Acad. Sci. U.S.A. 110 18561–18565. 10.1073/pnas.1311190110 PubMed DOI PMC
Dhar U., Kachroo P. (1983). Alpine Flora of Kashmir Himalaya. Jodhpur: Scientific Publishers.
Dimri A. P., Dash S. K. (2012). Winter time climatic trends in the western Himalayas. Clim. Change 111 775–800. 10.1007/s10584-011-0201-y DOI
Dolezal J., Dvorsky M., Kopecky M., Liancourt P., Hiiesalu I., Macek M., et al. (2016). Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6:24881. 10.1038/srep24881 PubMed DOI PMC
Dullinger S., Willner W., Plutzar C., Englisch T., Schratt L., Ehrendorfer L., et al. (2012). Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21 829–840. 10.1111/j.1466-8238.2011.00732.x DOI
Dvorský M., Chlumská Z., Altman J., Èapková K., Øeháková K., Macek M., et al. (2016). Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants. Sci. Rep. 6:24440. 10.1038/srep24440 PubMed DOI PMC
Elmendorf S. C., Henry G. H., Hollister R. D., Fosaa A. M., Gould W. A., Hermanutz L., et al. (2015). Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc. Natl. Acad. Sci. U.S.A. 112 448–452. 10.1073/pnas.1410088112 PubMed DOI PMC
Engler R., Randin C. F., Thuiller W., Dullinger S., Zimmermann N. E., Araújo M. B., et al. (2011). 21st century climate change threatens mountain flora unequally across Europe. Glob. Chang. Biol. 17 2330–2341. 10.1111/j.1365-2486.2010.02393.x DOI
Erschbamer B., Unterluggauer P., Winkler E., Mallaun M. (2011). Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83 387–401.
Fox J., Weisberg S. (2019). An R Companion To Applied Regression. Thousand Oaks: Sage publications.
García F. C., Bestion E., Warfield R., Yvon-Durocher G. (2018). Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl. Acad. Sci. U.S.A. 115 10989–10994. 10.1073/pnas.1805518115 PubMed DOI PMC
Gehrke B., Linder P. H. (2014). Species richness, endemism and species composition in the tropical Afroalpine flora. Alp. Bot. 124 165–177. 10.1007/s00035-014-0132-0 DOI
Geiger R. (1950). The Climate Near the Ground. Cambridge, MA: Harvard University Press.
Gillman L. N., Wright S. D., Cusens J., McBride P. D., Malhi Y., Whittaker R. J. (2015). Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 24 107–117. 10.1111/geb.12245 DOI
Gobiet A., Kotlarski S., Beniston M., Heinrich G., Rajczak J., Stoffel M. (2014). 21st century climate change in the European Alps—a review. Sci. Total Environ. 493 1138–1151. 10.1016/j.scitotenv.2013.07.050 PubMed DOI
Gottfried M., Pauli H., Futschik A., Akhalkatsi M., Baranèok P., Alonso J. L. B., et al. (2012). Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2 111–115. 10.1038/nclimate1329 DOI
Grabherr G., Gottfried M., Pauli H. (2010). Climate change impacts in alpine environments. Geogr. Compass 4 1133–1153. 10.1111/j.1749-8198.2010.00356.x DOI
Grimm N. B., Chapin F. S., III, Bierwagen B., Gonzalez P., Groffman P. M., Luo Y., et al. (2013). The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 11:474 10.1890/120282 474 DOI
Grytnes J. A. (2003). Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26 291–300. 10.1034/j.1600-0587.2003.03358.x DOI
Grytnes J. A., Heegaard E., Ihlen P. G. (2006). Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol. 29 241–246. 10.1016/j.actao.2005.10.007 DOI
Grytnes J. A., Kapfer J., Jurasinski G., Birks H. H., Henriksen H., Klanderud K., et al. (2014). Identifying driving factors behind observed species range shifts on European mountains. Glob. Ecol. Biogeogr. 23 876–884. 10.1111/geb.12170 DOI
Gutierrez-Giron A., Gavilan R. (2010). Spatial patterns and interspecific relations analysis help to better understand species distribution patterns in Mediterranean high mountain grassland. Plant Ecol. 210 137–151. 10.1007/s11258-010-9745-6 DOI
Hawkins B. A., Suzart de Albuquerque F., Araújo M. B., Beck J., Bini L. M., Cabrero-Sañudo F. J., et al. (2007). A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology 88 1877–1888. 10.1890/06-1444.1 PubMed DOI
Heikkinen R. K., Luoto M., Kuussaari M., Pöyry J. (2005). New insights into butterfly–environment relationships using partitioning methods. Proc. R. Soc. Lond. Ser. B Biol. Sci. 272 2203–2210. 10.1098/rspb.2005.3212 PubMed DOI PMC
Holzinger B., Hülber K., Camenisch M., Grabherr G. (2008). Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol. 195 179–196. 10.1007/s11258-007-9314-9 DOI
Honaker J., King G., Blackwell M. (2011). Amelia II: a program for missing data. J. Stat. Softw. 45 1–47. 10.18637/jss.v045.i07 DOI
Immerzeel W. W., Van Beek L. P. H., Bierkens M. F. P. (2010). Climate change will affect the Asian water towers. Science 328 1382–1385. 10.1126/science.1183188 PubMed DOI
IPCC (2001). Climate Change (2001): Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change. Cambridge, MA: IPCC.
Jorgenson J. C., Raynolds M. K., Reynolds J. H., Benson A. M. (2015). Twenty-five year record of changes in plant cover on tundra of north eastern Alaska. Arct. Antarct. Alp. Res. 47 785–806. 10.1657/AAAR0014-097 DOI
Kazakis G., Ghosn D., Vogiatzakis I. N., Papanastasis V. P. (2007). Vascular plant diversity and climate change in the alpine zone of the LefkaOri. Crete. Biodivers. Conserv. 16 1603–1615. 10.1007/s10531-006-9021-1 DOI
Körner C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Berlin: Springer.
Körner C. (2011). Coldest places on earth with angiosperm plant life. Alp. Bot. 121 11–22. 10.1007/s00035-011-0089-1 DOI
Körner C., Hiltbrunner E. (2018). The 90 ways to describe plant temperature. Perspect. Plant Ecol. Evol. Syst. 30 16–21. 10.1016/j.ppees.2017.04.004 DOI
Kulonen A., Imboden R. A., Rixen C., Maier S. B., Wipf S. (2018). Enough space in a warmer world? Microhabitat diversity and small-scale distribution of alpine plants on mountain summits. Divers. Distrib. 24 252–261. 10.1111/ddi.12673 DOI
Kumar R. K., Sahai A. K., Kumar K. K., Patwardhan S., Mishra P. K., Revadekar J. V., et al. (2006). High-resolution climate change scenarios for India for the 21st century. Curr. Sci. 90 334–345.
Kumar V., Jain S. K. (2010). Trends in seasonal and annual rainfall and rainy days in Kashmir valley in the last century. Quatern Int. 212 64–69. 10.1016/j.quaint.2009.08.006 DOI
Lamprecht A., Semenchuk P. R., Steinbauer K., Winkler M., Pauli H. (2018). Climate change leads to accelerated transformation of high elevation vegetation in the central Alps. New Phytol. 220 447–459. 10.1111/nph.15290 PubMed DOI PMC
Legendre P., Legendre L. F. (2012). Numerical Ecology. Amsterdam: Elsevier.
Lemay M. A., Nolet L., Bernier M., Levesque E., Boudreau S. (2018). Spatially explicit modeling and prediction of shrub cover increase near Umiujaq. Nunavik. Ecol. Monograph 88 385–407. 10.1002/ecm.1296 DOI
Lenoir J., Gégout J. C., Marquet P. A., de Ruffray P., Brisse H. A. (2008). Significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768. 10.1126/science.1156831 PubMed DOI
Lenoir J., Svenning J. C. (2015). Climate related range shifts – a global multidimensional synthesis and new research directions. Ecography 38 15–28. 10.1111/ecog.00967 DOI
Liang E., Wang Y., Piao S., Lu X., Camarero J. J., Zhu H., et al. (2016). Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. U.S.A. 113 4380–4385. 10.1073/pnas.1520582113 PubMed DOI PMC
Malanson G. P., Rose J. P., Schroeder P. J., Fagre D. B. (2011). Contexts for change in alpine tundra. Phys. Geogr. 32 97–113. 10.2747/0272-3646.32.2.97 DOI
Matteodo M., Wipf S., Stockli V., Rixen C., Vittoz P. (2013). Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ. Res. Lett. 8:24043 10.1088/1748-9326/8/2/024043 DOI
McCain C. M., Grytnes J. A. (2010). Elevational Gradients In Species Richness Encyclopidia Of Life Sciences. Hoboken, NJ: John Wiley & Sons.
Murtaza K. O., Romshoo S. A. (2017). Recent glacier changes in the Kashmir Alpine Himalayas. India. Geocarto Int. 32 188–205. 10.1080/10106049.2015.1132482 DOI
Myers N., Mittermeier R., Mittermeier C., Fonseca G. A., Kent J. (2000). Biodiversity hotspots for conservation priorities. Nature 403 853–858. 10.1038/35002501 PubMed DOI
Noroozi J., Talebi A., Doostmohammadi M., Rumpf S. B., Linder H. P., Schneeweiss G. M. (2018). Hotspots within a global biodiversity hotspot - areas of endemism are associated with high mountain ranges. Sci. Rep. 8:10345. 10.1038/s41598-018-28504-9 PubMed DOI PMC
Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2019). Vegan: Community Ecology Package. R Package Version 3.5.2. Available online at: https://CRAN.R-project.org/package=vegan (accessed May, 2019).
Pauli H., Gottfried M., Dullinger S., Abdaladze O., Akhalkatsi M., Alonso J. L. B., et al. (2012). Recent plant diversity changes on Europe’s mountain summits. Science 336 353–355. 10.1126/science.1219033 PubMed DOI
Pauli H., Gottfried M., Lamprecht A., Niessner S., Rumpf S. B., Winkler M., et al. (2015). The GLORIA Field Manual – Standard Multi-Summit Approach, Supplementary Methods and Extra Approaches GLORIA-Coordination. Vienna: Austrian Academy of Sciences.
Polunin O., Stainton A. (1984). Flowers of the Himalaya. Oxford: Oxford University Press.
R Core Team (2019). R: A Language And Environment For Statistical Computing. Vienna: R Foundation for Statistical Computing.
Rapacciuolo G., Maher S. P., Schneider A. C., Hammond T. T., Jabis M. D., Walsh R. E., et al. (2014). Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Glob. Change Biol. 20 2841–2855. 10.1111/gcb.12638 PubMed DOI PMC
Romshoo S. A., Altaf S., Rashid I., Dar R. A. (2017). Climatic, geomorphic and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir, India. Geomat. Nat. Haz. Risk 9 224–248. 10.1080/19475705.2017.1417332 DOI
Romshoo S. A., Dar R. A., Rashid I., Marazi A., Ali N., Zaz S. N. (2015). Implications of shrinking cryosphere under changing climate on the stream flows of the upper Indus basin. Arct. Antarct. Alp. Res. 47 627–644. 10.1657/AAAR0014-088 DOI
Rowan A. V. (2017). The ‘Little Ice age’ in the himalaya: a review of glacier advance driven by northern hemisphere temperature change. Holocene 27 292–308. 10.1177/0959683616658530 DOI
Rumpf S. B., Hülber K., Klonner G., Moser D., Schütz M., Wessely J., et al. (2018). Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. U.S.A. 115 1848–1853. 10.1073/pnas.1713936115 PubMed DOI PMC
Rumpf S. B., Hülber K., Wessely J., Willner W., Moser D., Gattringer A., et al. (2019). Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10 1–9. 10.1038/s41467-019-12343-x PubMed DOI PMC
Scherrer D., Körner C. (2011). Topographically controlled thermal habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38 406–416. 10.1111/j.1365-2699.2010.02407.x DOI
Shekhar M., Bhardwaj A., Singh S., Ranhotra P. S., Bhattacharyya A., Pal A. K., et al. (2017). Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci. Rep. 7:10305. 10.1038/s41598-017-09212-2 PubMed DOI PMC
Shrestha M. L. (2000). Interannual variation of summer monsoon rainfall over Nepal and its relation to Southern Oscillation Index. Meteor. Atmos. Phys. 75 21–28. 10.1007/s007030070012 DOI
Si X., Baselga A., Ding P. A. (2015). Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS One 10:e0127692. 10.1371/journal.pone.0127692 PubMed DOI PMC
Sigdel S. R., Wang Y., Camarero J. J., Zhu H., Liang E., Peñuelas J. (2018). Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob. Change Biol. 24 5549–5559. 10.1111/gcb.14428 PubMed DOI
Smith S. J., Edmonds J., Hartin C. A., Mundra A., Calvin K. (2015). Near-term acceleration in the rate of temperature change. Nat. Clim. Chang. 5 333–336. 10.1038/nclimate2552 DOI
Smyčka J., Roquet C., Renaud J., Thuiller W., Zimmermann N. E., Lavergne S. (2017). Disentangling drivers of plant endemism and diversification in the European Alps – A phylogenetic and spatially explicit approach. Perspect. Plant Ecol. Evol. Syst. 28 19–27. 10.1016/j.ppees.2017.06.004 DOI
Speed J. D., Austrheim G., Hester A. J., Mysterud A. (2012). Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23 617–625. 10.1111/j.1654-1103.2012.01391.x DOI
Steinbauer M. J., Grytnes J. A., Jurasinski G., Kulonen A., Lenoir J., Pauli H., et al. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556 231–234. 10.1038/s41586-018-0005-6 PubMed DOI
Sternberg M., Shoshany M. (2001). Influence of slope aspect on mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol. Res. 16 335–345. 10.1046/j.1440-1703.2001.00393.x DOI
Theurillat J. P., Felber F., Geissler P., Gobat J. M., Fierz M., Fischlin A., et al. (1998). Sensitivity of plant and soil ecosystems of the Alps to climate change. Views from the Alps. Reg. Perspect. Clim. Chang. 711 225–308.
Theurillat J. P., Iocchi M., Cutini M., De Marco G. (2011). Vascular plant richness along an elevation gradient at Monte Velino (Central Apennines, Italy). Biogeographia. Lavorid. Soc. Ital. Biogeogr. 28 149–166. 10.21426/B628110003 DOI
Torsten H., Bretz F., Westfall P. (2008). Simultaneous inference in general parametric models. Biom J. 50 346–363. 10.1002/bimj.200810425 PubMed DOI
Vanneste T., Michelsen O., Graae B. J., Kyrkjeeide M. O., Holien H., Hassel K., et al. (2017). Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32 579–593. 10.1007/s11284-017-1472-1 DOI
Vetaas O. R., Paudel K. P., Christensen M. (2019). Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J. Biogeogr. 46 1652–1663. 10.1111/jbi.13564 DOI
Waldock C., Dornelas M., Bates A. E. (2018). Temperature-driven biodiversity change: disentangling space and time. Bioscience 68 873–884. 10.1093/biosci/biy096 PubMed DOI PMC
Walsh S. J., Vitek J. D., Panciera S. E. (2007). Variability of soil temperature: A spatial and temporal analysis. J. Geogr. 90 82–90. 10.1080/00221349108979241 DOI
Walther G. R., Beißner S., Burga C. A. (2005). Trends in the upward shift of alpine plants. J. Veg. Sci. 16 541–548. 10.1111/j.1654-1103.2005.tb02394.x DOI
Whittaker R. J., Nogués-Bravo D., Araújo M. B. (2007). Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob. Ecol. Biogeogr. 16 76–89.
Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag.
Winkler M., Lamprecht A., Steinbauer K., Hülber K., Theurillat J. P., Breiner F., et al. (2016). The rich sides of mountain summits – a pan-European view on aspect preferences of alpine plants. J. Biogeogr. 43 2261–2273. 10.1111/jbi.12835 DOI
Wipf S., Stöckli V., Herz K., Rixen C. (2013). The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol. Divers. 6 447–455. 10.1080/17550874.2013.764943 DOI
Wipf S., Stoeckli V., Bebi P. (2009). Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim. Change 94 105–121. 10.1007/s10584-009-9546-x DOI
Wolf A., Lazzarotto P., Bugmann H. (2012). The relative importance of land use and climatic change in Alpine catchments. Clim. Change 111 279–300. 10.1007/s10584-011-0209-3 DOI
Woodward G., Perkins D. M., Brown L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365 2093–2106. 10.1098/rstb.2010.0055 PubMed DOI PMC
You J., Qin X., Ranjitkar S., Lougheed S. C., Wang M., Zhou W., et al. (2018). Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci. Rep. 8:5879. 10.1038/s41598-018-24360-9 PubMed DOI PMC
Zaz S. N., Romshoo S. A., Krishnamoorthy R. T., Viswanadhapalli Y. (2019). Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events. Atmos. Chem. Phys. 19 15–37. 10.5194/acp-19-15-2019 DOI
Zimmer A., Meneses R. I., Rabatel A., Soruco A., Dangles O., Anthelme F. (2018). Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspect. Plant Ecol. Evol. Syst. 30 89–102. 10.1016/j.ppees.2017.05.003 DOI