Early Evidence of Shifts in Alpine Summit Vegetation: A Case Study From Kashmir Himalaya

. 2020 ; 11 () : 421. [epub] 20200424

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32391033

Under the contemporary climate change, the Himalaya is reported to be warming at a much higher rate than the global average. However, little is known about the alpine vegetation responses to recent climate change in the rapidly warming Himalaya. Here we studied vegetation dynamics on alpine summits in Kashmir Himalaya in relation to in situ measured microclimate. The summits, representing an elevation gradient from treeline to nival zone (3530-3740 m), were first surveyed in 2014 and then re-surveyed in 2018. The initial survey showed that the species richness, vegetation cover and soil temperature decreased with increasing elevation. Species richness and soil temperature differed significantly among slopes, with east and south slopes showing higher values than north and west slopes. The re-survey showed that species richness increased on the lower three summits but decreased on the highest summit (nival zone) and also revealed a substantial increase in the cover of dominant shrubs, graminoids, and forbs. The nestedness-resultant dissimilarity, rather than species turnover, contributed more to the magnitude of β-diversity among the summits. High temporal species turnover was found on south and east aspects, while high nestedness was recorded along north and west aspects. Thermophilization was more pronounced on the lower two summits and along the northern aspects. Our study provides crucial scientific data on climate change impacts on the alpine vegetation of Kashmir Himalaya. This information will fill global knowledge gaps from the developing world.

Zobrazit více v PubMed

Alexander J. M., Diez J. M., Levine J. M. (2015). Novel competitors shape species’ responses to climate change. Nature 525 515–518. 10.1038/nature14952 PubMed DOI

Anthelme F., Jacobsen D., Macek P., Meneses R. I., Moret P., Beck S., et al. (2014). Biodiversity patterns and continental insularity in the tropical high Andes. Arctic Antarctic Alp. Res. 46 811–828. 10.1657/1938-4246-46.4.811 DOI

Archer D. R., Fowler H. J. (2004). Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8 47–61. 10.5194/hess-8-47-2004 DOI

Baselga A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecol. Biogeogr. 21 1223–1232. 10.1111/j.1466-8238.2011.00756.x DOI

Baselga A., Orme C. D. L. (2012). betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3 808–812. 10.1111/j.2041-210X.2012.00224.x DOI

Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. (2012). Impacts of climate change on the future of biodiversity. Ecol. Lett. 15 365–377. 10.1111/j.1461-0248.2011.01736.x PubMed DOI PMC

Bertrand R., Lenoir J., Piedallu C., Riofrío-Dillon G., de Ruffray P., Vidal C., et al. (2011). Changes in plant community composition lag behind climate warming in lowland forests. Nature 479 517–520. 10.1038/nature10548 PubMed DOI

Borgaonkar H. P., Pant G. B. (2001). Long-term climate variability over monsoon Asia as revealed by some proxy sources. Mausam 52 9–22.

Bruun H. H., Moen J., Virtanen R., Grytnes J. A., Oksanen L., Angerbjörn A. (2006). Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. J. Veg. Sci. 17 37–46. 10.1111/j.1654-1103.2006.tb02421.x DOI

Callaway R. M., Brooker R. W., Choler P., Kikvidze Z., Lortie C. J., Michalet R., et al. (2002). Positive interactions among alpine plants increase with stress. Nature 417 844–848. 10.1038/nature00812 PubMed DOI

Chen I. C., Hill J. K., Ohlemüller R., Roy D. B. (2011). Rapid range shifts of species associated with high levels of climate warming. Science 333 1024–1026. 10.1126/science.1206432 PubMed DOI

Chersich S., Rejšek K., Vranová V., Bordoni M., Meisina C. (2015). Climate change impacts on the Alpine ecosystem: an overview with focus on the soil – a review. J. For. Sci. 61 496–514. 10.17221/47/2015-JFS DOI

Dar G. H., Khuroo A. A. (2013). Floristic diversity in Kashmir Himalaya: progress, problems and prospects. Sains Malays 42 1377–1386.

De Frenne P., Rodríguez-Sánchez F., Coomes D. A., Baeten L., Verstraeten G., Vellend M., et al. (2013). Microclimate moderates plant responses to macroclimate warming. Proc. Natl. Acad. Sci. U.S.A. 110 18561–18565. 10.1073/pnas.1311190110 PubMed DOI PMC

Dhar U., Kachroo P. (1983). Alpine Flora of Kashmir Himalaya. Jodhpur: Scientific Publishers.

Dimri A. P., Dash S. K. (2012). Winter time climatic trends in the western Himalayas. Clim. Change 111 775–800. 10.1007/s10584-011-0201-y DOI

Dolezal J., Dvorsky M., Kopecky M., Liancourt P., Hiiesalu I., Macek M., et al. (2016). Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 6:24881. 10.1038/srep24881 PubMed DOI PMC

Dullinger S., Willner W., Plutzar C., Englisch T., Schratt L., Ehrendorfer L., et al. (2012). Post-glacial migration lag restricts range filling of plants in the European Alps. Glob. Ecol. Biogeogr. 21 829–840. 10.1111/j.1466-8238.2011.00732.x DOI

Dvorský M., Chlumská Z., Altman J., Èapková K., Øeháková K., Macek M., et al. (2016). Gardening in the zone of death: an experimental assessment of the absolute elevation limit of vascular plants. Sci. Rep. 6:24440. 10.1038/srep24440 PubMed DOI PMC

Elmendorf S. C., Henry G. H., Hollister R. D., Fosaa A. M., Gould W. A., Hermanutz L., et al. (2015). Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns. Proc. Natl. Acad. Sci. U.S.A. 112 448–452. 10.1073/pnas.1410088112 PubMed DOI PMC

Engler R., Randin C. F., Thuiller W., Dullinger S., Zimmermann N. E., Araújo M. B., et al. (2011). 21st century climate change threatens mountain flora unequally across Europe. Glob. Chang. Biol. 17 2330–2341. 10.1111/j.1365-2486.2010.02393.x DOI

Erschbamer B., Unterluggauer P., Winkler E., Mallaun M. (2011). Changes in plant species diversity revealed by long-term monitoring on mountain summits in the Dolomites (northern Italy). Preslia 83 387–401.

Fox J., Weisberg S. (2019). An R Companion To Applied Regression. Thousand Oaks: Sage publications.

García F. C., Bestion E., Warfield R., Yvon-Durocher G. (2018). Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl. Acad. Sci. U.S.A. 115 10989–10994. 10.1073/pnas.1805518115 PubMed DOI PMC

Gehrke B., Linder P. H. (2014). Species richness, endemism and species composition in the tropical Afroalpine flora. Alp. Bot. 124 165–177. 10.1007/s00035-014-0132-0 DOI

Geiger R. (1950). The Climate Near the Ground. Cambridge, MA: Harvard University Press.

Gillman L. N., Wright S. D., Cusens J., McBride P. D., Malhi Y., Whittaker R. J. (2015). Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 24 107–117. 10.1111/geb.12245 DOI

Gobiet A., Kotlarski S., Beniston M., Heinrich G., Rajczak J., Stoffel M. (2014). 21st century climate change in the European Alps—a review. Sci. Total Environ. 493 1138–1151. 10.1016/j.scitotenv.2013.07.050 PubMed DOI

Gottfried M., Pauli H., Futschik A., Akhalkatsi M., Baranèok P., Alonso J. L. B., et al. (2012). Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2 111–115. 10.1038/nclimate1329 DOI

Grabherr G., Gottfried M., Pauli H. (2010). Climate change impacts in alpine environments. Geogr. Compass 4 1133–1153. 10.1111/j.1749-8198.2010.00356.x DOI

Grimm N. B., Chapin F. S., III, Bierwagen B., Gonzalez P., Groffman P. M., Luo Y., et al. (2013). The impacts of climate change on ecosystem structure and function. Front. Ecol. Environ. 11:474 10.1890/120282 474 DOI

Grytnes J. A. (2003). Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26 291–300. 10.1034/j.1600-0587.2003.03358.x DOI

Grytnes J. A., Heegaard E., Ihlen P. G. (2006). Species richness of vascular plants, bryophytes, and lichens along an altitudinal gradient in western Norway. Acta Oecol. 29 241–246. 10.1016/j.actao.2005.10.007 DOI

Grytnes J. A., Kapfer J., Jurasinski G., Birks H. H., Henriksen H., Klanderud K., et al. (2014). Identifying driving factors behind observed species range shifts on European mountains. Glob. Ecol. Biogeogr. 23 876–884. 10.1111/geb.12170 DOI

Gutierrez-Giron A., Gavilan R. (2010). Spatial patterns and interspecific relations analysis help to better understand species distribution patterns in Mediterranean high mountain grassland. Plant Ecol. 210 137–151. 10.1007/s11258-010-9745-6 DOI

Hawkins B. A., Suzart de Albuquerque F., Araújo M. B., Beck J., Bini L. M., Cabrero-Sañudo F. J., et al. (2007). A global evaluation of metabolic theory as an explanation for terrestrial species richness gradients. Ecology 88 1877–1888. 10.1890/06-1444.1 PubMed DOI

Heikkinen R. K., Luoto M., Kuussaari M., Pöyry J. (2005). New insights into butterfly–environment relationships using partitioning methods. Proc. R. Soc. Lond. Ser. B Biol. Sci. 272 2203–2210. 10.1098/rspb.2005.3212 PubMed DOI PMC

Holzinger B., Hülber K., Camenisch M., Grabherr G. (2008). Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol. 195 179–196. 10.1007/s11258-007-9314-9 DOI

Honaker J., King G., Blackwell M. (2011). Amelia II: a program for missing data. J. Stat. Softw. 45 1–47. 10.18637/jss.v045.i07 DOI

Immerzeel W. W., Van Beek L. P. H., Bierkens M. F. P. (2010). Climate change will affect the Asian water towers. Science 328 1382–1385. 10.1126/science.1183188 PubMed DOI

IPCC (2001). Climate Change (2001): Impacts, Adaption and Vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change. Cambridge, MA: IPCC.

Jorgenson J. C., Raynolds M. K., Reynolds J. H., Benson A. M. (2015). Twenty-five year record of changes in plant cover on tundra of north eastern Alaska. Arct. Antarct. Alp. Res. 47 785–806. 10.1657/AAAR0014-097 DOI

Kazakis G., Ghosn D., Vogiatzakis I. N., Papanastasis V. P. (2007). Vascular plant diversity and climate change in the alpine zone of the LefkaOri. Crete. Biodivers. Conserv. 16 1603–1615. 10.1007/s10531-006-9021-1 DOI

Körner C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Berlin: Springer.

Körner C. (2011). Coldest places on earth with angiosperm plant life. Alp. Bot. 121 11–22. 10.1007/s00035-011-0089-1 DOI

Körner C., Hiltbrunner E. (2018). The 90 ways to describe plant temperature. Perspect. Plant Ecol. Evol. Syst. 30 16–21. 10.1016/j.ppees.2017.04.004 DOI

Kulonen A., Imboden R. A., Rixen C., Maier S. B., Wipf S. (2018). Enough space in a warmer world? Microhabitat diversity and small-scale distribution of alpine plants on mountain summits. Divers. Distrib. 24 252–261. 10.1111/ddi.12673 DOI

Kumar R. K., Sahai A. K., Kumar K. K., Patwardhan S., Mishra P. K., Revadekar J. V., et al. (2006). High-resolution climate change scenarios for India for the 21st century. Curr. Sci. 90 334–345.

Kumar V., Jain S. K. (2010). Trends in seasonal and annual rainfall and rainy days in Kashmir valley in the last century. Quatern Int. 212 64–69. 10.1016/j.quaint.2009.08.006 DOI

Lamprecht A., Semenchuk P. R., Steinbauer K., Winkler M., Pauli H. (2018). Climate change leads to accelerated transformation of high elevation vegetation in the central Alps. New Phytol. 220 447–459. 10.1111/nph.15290 PubMed DOI PMC

Legendre P., Legendre L. F. (2012). Numerical Ecology. Amsterdam: Elsevier.

Lemay M. A., Nolet L., Bernier M., Levesque E., Boudreau S. (2018). Spatially explicit modeling and prediction of shrub cover increase near Umiujaq. Nunavik. Ecol. Monograph 88 385–407. 10.1002/ecm.1296 DOI

Lenoir J., Gégout J. C., Marquet P. A., de Ruffray P., Brisse H. A. (2008). Significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768. 10.1126/science.1156831 PubMed DOI

Lenoir J., Svenning J. C. (2015). Climate related range shifts – a global multidimensional synthesis and new research directions. Ecography 38 15–28. 10.1111/ecog.00967 DOI

Liang E., Wang Y., Piao S., Lu X., Camarero J. J., Zhu H., et al. (2016). Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. U.S.A. 113 4380–4385. 10.1073/pnas.1520582113 PubMed DOI PMC

Malanson G. P., Rose J. P., Schroeder P. J., Fagre D. B. (2011). Contexts for change in alpine tundra. Phys. Geogr. 32 97–113. 10.2747/0272-3646.32.2.97 DOI

Matteodo M., Wipf S., Stockli V., Rixen C., Vittoz P. (2013). Elevation gradient of successful plant traits for colonizing alpine summits under climate change. Environ. Res. Lett. 8:24043 10.1088/1748-9326/8/2/024043 DOI

McCain C. M., Grytnes J. A. (2010). Elevational Gradients In Species Richness Encyclopidia Of Life Sciences. Hoboken, NJ: John Wiley & Sons.

Murtaza K. O., Romshoo S. A. (2017). Recent glacier changes in the Kashmir Alpine Himalayas. India. Geocarto Int. 32 188–205. 10.1080/10106049.2015.1132482 DOI

Myers N., Mittermeier R., Mittermeier C., Fonseca G. A., Kent J. (2000). Biodiversity hotspots for conservation priorities. Nature 403 853–858. 10.1038/35002501 PubMed DOI

Noroozi J., Talebi A., Doostmohammadi M., Rumpf S. B., Linder H. P., Schneeweiss G. M. (2018). Hotspots within a global biodiversity hotspot - areas of endemism are associated with high mountain ranges. Sci. Rep. 8:10345. 10.1038/s41598-018-28504-9 PubMed DOI PMC

Oksanen J., Blanchet F. G., Friendly M., Kindt R., Legendre P., McGlinn D., et al. (2019). Vegan: Community Ecology Package. R Package Version 3.5.2. Available online at: https://CRAN.R-project.org/package=vegan (accessed May, 2019).

Pauli H., Gottfried M., Dullinger S., Abdaladze O., Akhalkatsi M., Alonso J. L. B., et al. (2012). Recent plant diversity changes on Europe’s mountain summits. Science 336 353–355. 10.1126/science.1219033 PubMed DOI

Pauli H., Gottfried M., Lamprecht A., Niessner S., Rumpf S. B., Winkler M., et al. (2015). The GLORIA Field Manual – Standard Multi-Summit Approach, Supplementary Methods and Extra Approaches GLORIA-Coordination. Vienna: Austrian Academy of Sciences.

Polunin O., Stainton A. (1984). Flowers of the Himalaya. Oxford: Oxford University Press.

R Core Team (2019). R: A Language And Environment For Statistical Computing. Vienna: R Foundation for Statistical Computing.

Rapacciuolo G., Maher S. P., Schneider A. C., Hammond T. T., Jabis M. D., Walsh R. E., et al. (2014). Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Glob. Change Biol. 20 2841–2855. 10.1111/gcb.12638 PubMed DOI PMC

Romshoo S. A., Altaf S., Rashid I., Dar R. A. (2017). Climatic, geomorphic and anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir, India. Geomat. Nat. Haz. Risk 9 224–248. 10.1080/19475705.2017.1417332 DOI

Romshoo S. A., Dar R. A., Rashid I., Marazi A., Ali N., Zaz S. N. (2015). Implications of shrinking cryosphere under changing climate on the stream flows of the upper Indus basin. Arct. Antarct. Alp. Res. 47 627–644. 10.1657/AAAR0014-088 DOI

Rowan A. V. (2017). The ‘Little Ice age’ in the himalaya: a review of glacier advance driven by northern hemisphere temperature change. Holocene 27 292–308. 10.1177/0959683616658530 DOI

Rumpf S. B., Hülber K., Klonner G., Moser D., Schütz M., Wessely J., et al. (2018). Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. U.S.A. 115 1848–1853. 10.1073/pnas.1713936115 PubMed DOI PMC

Rumpf S. B., Hülber K., Wessely J., Willner W., Moser D., Gattringer A., et al. (2019). Extinction debts and colonization credits of non-forest plants in the European Alps. Nat. Commun. 10 1–9. 10.1038/s41467-019-12343-x PubMed DOI PMC

Scherrer D., Körner C. (2011). Topographically controlled thermal habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38 406–416. 10.1111/j.1365-2699.2010.02407.x DOI

Shekhar M., Bhardwaj A., Singh S., Ranhotra P. S., Bhattacharyya A., Pal A. K., et al. (2017). Himalayan glaciers experienced significant mass loss during later phases of little ice age. Sci. Rep. 7:10305. 10.1038/s41598-017-09212-2 PubMed DOI PMC

Shrestha M. L. (2000). Interannual variation of summer monsoon rainfall over Nepal and its relation to Southern Oscillation Index. Meteor. Atmos. Phys. 75 21–28. 10.1007/s007030070012 DOI

Si X., Baselga A., Ding P. A. (2015). Revealing beta-diversity patterns of breeding bird and lizard communities on inundated land-bridge islands by separating the turnover and nestedness components. PLoS One 10:e0127692. 10.1371/journal.pone.0127692 PubMed DOI PMC

Sigdel S. R., Wang Y., Camarero J. J., Zhu H., Liang E., Peñuelas J. (2018). Moisture-mediated responsiveness of treeline shifts to global warming in the Himalayas. Glob. Change Biol. 24 5549–5559. 10.1111/gcb.14428 PubMed DOI

Smith S. J., Edmonds J., Hartin C. A., Mundra A., Calvin K. (2015). Near-term acceleration in the rate of temperature change. Nat. Clim. Chang. 5 333–336. 10.1038/nclimate2552 DOI

Smyčka J., Roquet C., Renaud J., Thuiller W., Zimmermann N. E., Lavergne S. (2017). Disentangling drivers of plant endemism and diversification in the European Alps – A phylogenetic and spatially explicit approach. Perspect. Plant Ecol. Evol. Syst. 28 19–27. 10.1016/j.ppees.2017.06.004 DOI

Speed J. D., Austrheim G., Hester A. J., Mysterud A. (2012). Elevational advance of alpine plant communities is buffered by herbivory. J. Veg. Sci. 23 617–625. 10.1111/j.1654-1103.2012.01391.x DOI

Steinbauer M. J., Grytnes J. A., Jurasinski G., Kulonen A., Lenoir J., Pauli H., et al. (2018). Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556 231–234. 10.1038/s41586-018-0005-6 PubMed DOI

Sternberg M., Shoshany M. (2001). Influence of slope aspect on mediterranean woody formations: comparison of a semiarid and an arid site in Israel. Ecol. Res. 16 335–345. 10.1046/j.1440-1703.2001.00393.x DOI

Theurillat J. P., Felber F., Geissler P., Gobat J. M., Fierz M., Fischlin A., et al. (1998). Sensitivity of plant and soil ecosystems of the Alps to climate change. Views from the Alps. Reg. Perspect. Clim. Chang. 711 225–308.

Theurillat J. P., Iocchi M., Cutini M., De Marco G. (2011). Vascular plant richness along an elevation gradient at Monte Velino (Central Apennines, Italy). Biogeographia. Lavorid. Soc. Ital. Biogeogr. 28 149–166. 10.21426/B628110003 DOI

Torsten H., Bretz F., Westfall P. (2008). Simultaneous inference in general parametric models. Biom J. 50 346–363. 10.1002/bimj.200810425 PubMed DOI

Vanneste T., Michelsen O., Graae B. J., Kyrkjeeide M. O., Holien H., Hassel K., et al. (2017). Impact of climate change on alpine vegetation of mountain summits in Norway. Ecol. Res. 32 579–593. 10.1007/s11284-017-1472-1 DOI

Vetaas O. R., Paudel K. P., Christensen M. (2019). Principal factors controlling biodiversity along an elevation gradient: Water, energy and their interaction. J. Biogeogr. 46 1652–1663. 10.1111/jbi.13564 DOI

Waldock C., Dornelas M., Bates A. E. (2018). Temperature-driven biodiversity change: disentangling space and time. Bioscience 68 873–884. 10.1093/biosci/biy096 PubMed DOI PMC

Walsh S. J., Vitek J. D., Panciera S. E. (2007). Variability of soil temperature: A spatial and temporal analysis. J. Geogr. 90 82–90. 10.1080/00221349108979241 DOI

Walther G. R., Beißner S., Burga C. A. (2005). Trends in the upward shift of alpine plants. J. Veg. Sci. 16 541–548. 10.1111/j.1654-1103.2005.tb02394.x DOI

Whittaker R. J., Nogués-Bravo D., Araújo M. B. (2007). Geographical gradients of species richness: a test of the water-energy conjecture of Hawkins et al. (2003) using European data for five taxa. Glob. Ecol. Biogeogr. 16 76–89.

Wickham H. (2016). ggplot2: Elegant Graphics for Data Analysis. New York, NY: Springer-Verlag.

Winkler M., Lamprecht A., Steinbauer K., Hülber K., Theurillat J. P., Breiner F., et al. (2016). The rich sides of mountain summits – a pan-European view on aspect preferences of alpine plants. J. Biogeogr. 43 2261–2273. 10.1111/jbi.12835 DOI

Wipf S., Stöckli V., Herz K., Rixen C. (2013). The oldest monitoring site of the Alps revisited: accelerated increase in plant species richness on Piz Linard summit since 1835. Plant Ecol. Divers. 6 447–455. 10.1080/17550874.2013.764943 DOI

Wipf S., Stoeckli V., Bebi P. (2009). Winter climate change in alpine tundra: plant responses to changes in snow depth and snowmelt timing. Clim. Change 94 105–121. 10.1007/s10584-009-9546-x DOI

Wolf A., Lazzarotto P., Bugmann H. (2012). The relative importance of land use and climatic change in Alpine catchments. Clim. Change 111 279–300. 10.1007/s10584-011-0209-3 DOI

Woodward G., Perkins D. M., Brown L. E. (2010). Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365 2093–2106. 10.1098/rstb.2010.0055 PubMed DOI PMC

You J., Qin X., Ranjitkar S., Lougheed S. C., Wang M., Zhou W., et al. (2018). Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Sci. Rep. 8:5879. 10.1038/s41598-018-24360-9 PubMed DOI PMC

Zaz S. N., Romshoo S. A., Krishnamoorthy R. T., Viswanadhapalli Y. (2019). Analyses of temperature and precipitation in the Indian Jammu and Kashmir region for the 1980–2016 period: implications for remote influence and extreme events. Atmos. Chem. Phys. 19 15–37. 10.5194/acp-19-15-2019 DOI

Zimmer A., Meneses R. I., Rabatel A., Soruco A., Dangles O., Anthelme F. (2018). Time lag between glacial retreat and upward migration alters tropical alpine communities. Perspect. Plant Ecol. Evol. Syst. 30 89–102. 10.1016/j.ppees.2017.05.003 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...