The Fate of Endemic Species Specialized in Island Habitat under Climate Change in a Mediterranean High Mountain
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
UAL2020-RNM-B2007, I+D+i UAL-FEDER
Metabarcoding comparado de la rizosfera en tres ambientes edáficos singulares explotados por la minería: bases para el desarrollo sostenible
CGL2010-16357
Spanish Ministerio de Ciencia e Innovación
PubMed
36501233
PubMed Central
PMC9739314
DOI
10.3390/plants11233193
PII: plants11233193
Knihovny.cz E-resources
- Keywords
- Moehringia fontqueri, Sierra Nevada (Spain), diversity loss, fine-scale ecological niche modeling, global change, mountain cliff escarpments, reproductive success,
- Publication type
- Journal Article MeSH
Mediterranean high-mountain endemic species are particularly vulnerable to climatic changes in temperature, precipitation and snow-cover dynamics. Sierra Nevada (Spain) is a biodiversity hotspot in the western Mediterranean, with an enormous plant species richness and endemicity. Moehringia fontqueri is a threatened endemic plant restricted to north-facing siliceous rocks along a few ridges of the eastern Sierra Nevada. To guide conservation actions against climate change effects, here we propose the simultaneous assessment of the current reproductive success and the possible species' range changes between current and future climatic conditions, assessing separately different subpopulations by altitude. Reproductive success was tested through the seed-set data analysis. The species' current habitat suitability was modeled in Maxent using species occurrences, topographic, satellite and climatic variables. Future habitat suitability was carried out for two climatic scenarios (RCP 2.6 and 8.5). The results showed the lowest reproductive success at the lowest altitudes, and vice versa at the highest altitudes. Habitat suitability decreased by 80% from current conditions to the worst-case scenario (RCP 8.5). The lowest subpopulations were identified as the most vulnerable to climate change effects while the highest ones were the nearest to future suitable habitats. Our simultaneous assessment of reproductive success and habitat suitability aims to serve as a model to guide conservation, management and climate change mitigation strategies through adaptive management to safeguard the persistence of the maximum genetic pool of Mediterranean high-mountain plants threatened by climate change.
Department of Biology and Geology CEIMAR CecoUAL University of Almería 04120 Almería Spain
Department of Botany University of Granada 18071 Granada Spain
Department of Botany University of South Bohemia CZ 37005 České Budějovice Czech Republic
See more in PubMed
Inouye D.W. Effects of climate change on alpine plants and their pollinators. Ann. N. Y. Acad. Sci. 2020;1469:26–37. doi: 10.1111/nyas.14104. PubMed DOI
Körner C., Paulsen J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 2004;31:713–732. doi: 10.1111/j.1365-2699.2003.01043.x. DOI
Körner C., Paulsen J., Spehn E.M. A definition of mountains and their bioclimatic belts for global comparisons of biodiversity data. Alp. Bot. 2011;121:73–78. doi: 10.1007/s00035-011-0094-4. DOI
Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. PubMed DOI
Chape S., Spalding M., Jenkins M.D. The World’s Protected Areas. University of California Press; Berkeley, CA, USA: 2008. Prepared by the UNEP World Conservation Monitoring Centre.
Körner C., Jetz W., Paulsen J., Payne D., Rudmann-Maurer K., Spehn E.M. A global inventory of mountains for bio-geographical applications. Alp. Bot. 2017;127:1–15. doi: 10.1007/s00035-016-0182-6. DOI
Steinbauer M.J., Grytnes J.A., Jurasinski G., Kulonen A., Lenoir J., Pauli H., Rixen C., Winkler M., Bardy-Durchhalter M., Barni E., et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature. 2018;556:231–234. doi: 10.1038/s41586-018-0005-6. PubMed DOI
Hughes L. Biological consequences of global warming: Is the signal already apparent? Trends Ecol. Evol. 2000;15:56–61. doi: 10.1016/S0169-5347(99)01764-4. PubMed DOI
Körner C. The use of ‘altitude’ in ecological research. Trends. Ecol. Evol. 2007;22:569–574. doi: 10.1016/j.tree.2007.09.006. PubMed DOI
Frei E., Bodin J., Walther G.R. Plant species’ range shifts in mountainous areas-all uphill from here? Bot. Helv. 2010;120:117–128. doi: 10.1007/s00035-010-0076-y. DOI
Lenoir J., Gégout J.C., Guisan A., Vittoz P., Wohlgemuth T., Zimmermann N.E., Dullinger S., Pauli H., Willner W., Svenning J. Going against the flow: Potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography. 2010;33:295–303. doi: 10.1111/j.1600-0587.2010.06279.x. DOI
Walther G.R., Post E., Convey P., Menzel A., Parmesan C., Beebee T.J.C., Fromentin J., Hoegh-Guldberg O., Bairlein F. Ecological responses to recent climate change. Nature. 2002;416:389–395. doi: 10.1038/416389a. PubMed DOI
Grabherr G., Gottfried M., Pauli H. Climate effects on mountain plants. Nature. 1994;369:448. doi: 10.1038/369448a0. PubMed DOI
Thuiller W., Lavorel S., Araújo M.B., Sykes M.T., Prentice I.C. Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. USA. 2005;102:8245–8250. doi: 10.1073/pnas.0409902102. PubMed DOI PMC
Nogués-Bravo D., Rodríguez J., Hortal J., Batra P., Araújo M.B. Climate change, humans, and the extinction of the woolly mammoth. PLOS Biol. 2008;6:e79. doi: 10.1371/journal.pbio.0060079. PubMed DOI PMC
Engler R., Randin C.F., Thuiller W., Dullinger S., Zimmermann N.E., Araújo M.B., Pearman P.B., Le Lay G., Piedallu C., Albert C.H. 21st century climate change threatens mountain flora unequally across Europe. Glob. Change Biol. 2011;17:2330–2341. doi: 10.1111/j.1365-2486.2010.02393.x. DOI
Davis M.B., Shaw R.G. Range shifts and adaptive responses to Quaternary climate change. Science. 2001;292:673–679. doi: 10.1126/science.292.5517.673. PubMed DOI
Thuiller W., Araújo M.B., Pearson R.G., Whittaker R.J., Brotons L., Lavorel S. Biodiversity conservation: Uncertainty in predictions of extinction risk. Nature. 2004;430:1–33. doi: 10.1038/nature02716. PubMed DOI
Malhi Y., Franklin J., Seddon N., Solan M., Turner M.G., Field C.B., Knowlton N. Climate change and ecosystems: Threats, opportunities and solutions. Phil. Trans. R. Soc. B. 2020;375:2019010420190104. doi: 10.1098/rstb.2019.0104. PubMed DOI PMC
Pauli H., Gottfried M., Dullinger S., Abdaladze O., Akhalkatsi M., Benito Alonso J.L., Coldea G., Dick J., Erschbamer B., Fernández Calzado R., et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science. 2012;336:353–355. doi: 10.1126/science.1219033. PubMed DOI
Gottfried M., Pauli H., Futschik A., Akhalkatsi M., Barančok P., Benito Alonso J.L., Coldea G., Dick J., Erschbamer B., Fernández Calzado M.R., et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Change. 2012;2:111–115. doi: 10.1038/nclimate1329. DOI
Hamid M., Khuroo A.A., Malik A.H., Ahmad R., Singh C.P., Dolezal J., Haq S.M. Early Evidence of Shifts in Alpine Summit Vegetation: A case study from Kashmir Himalaya. Front. Plant. Sci. 2020;11:421. doi: 10.3389/fpls.2020.00421. PubMed DOI PMC
Benito B.M., Lorite J., Peñas J. Simulating potential effects of climatic warming on altitudinal patterns of key species in Mediterranean-Alpine ecosystems. Clim. Change. 2011;108:471–483. doi: 10.1007/s10584-010-0015-3. DOI
Lamprecht A., Pauli H., Fernández-Calzado M.R., Lorite J., Molero Mesa J., Steinbauer K., Winkler M. Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain) Alp. Bot. 2021;131:27–39. doi: 10.1007/s00035-021-00246-x. DOI
Forest F., Grenyer R., Rouget M., Davies T.J., Cowling R.M., Faith D.P., Balmford A., Manning J.C., Procheş S., van der Bank M., et al. Preserving the evolutionary potential of floras in biodiversity hotspots. Nature. 2007;445:757–760. doi: 10.1038/nature05587. PubMed DOI
Benito B.M., Lorite J., Pérez-Pérez R., Gómez-Aparicio L., Peñas J. Forecasting plant range collapse in a mediterranean hotspot: When dispersal uncertainties matter. Divers. Distrib. 2014;20:72–83. doi: 10.1111/ddi.12148. DOI
Lande R. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. Am. Nat. 1993;142:911. doi: 10.1086/285580. PubMed DOI
Perrigo A., Hoorn C., Antonelli A. Why mountains matter for biodiversity. J. Biogeogr. 2020;47:315–325. doi: 10.1111/jbi.13731. DOI
Pérez-García F.J., Medina-Cazorla J.M., Martínez-Hernández F., Garrido-Becerra J.A., Mendoza-Fernández A.J., Salmerón-Sánchez E., Mota J.F. Iberian Baetic endemic flora and the implications for a conservation policy. Ann. Bot. Fenn. 2012;49:43–54. doi: 10.5735/085.049.0106. DOI
Holt R.D. The microevolutionary consequences of climate change. Trends Ecol. Evol. 1990;5:311–315. doi: 10.1016/0169-5347(90)90088-U. PubMed DOI
Salmerón-Sánchez E., Mendoza-Fernández A.J., Lorite J., Mota J.F., Peñas J. Plant conservation in Mediterranean-type ecosystems. Mediterr. Bot. 2021;42:e71333. doi: 10.5209/mbot.71333. DOI
Guisan A., Zimmermann N.E. Predictive habitat distribution models in ecology. Ecol. Model. 2000;135:147–186. doi: 10.1016/S0304-3800(00)00354-9. DOI
Lorite J., Gómez F., Mota J.F., Valle F. Orophilous plant communities of Baetic range in Andalusia (south-eastern Spain): Priority altitudinal-islands for conservation. Phytocoenologia. 2007;37:625. doi: 10.1127/0340-269X/2007/0037-0625. DOI
Lembrechts J.J., Nijs I., Lenoir J. Incorporating microclimate into species distribution models. Ecography. 2019;42:1267–1279. doi: 10.1111/ecog.03947. DOI
Guisan A., Thuiller W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005;8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x. PubMed DOI
Araújo M.B., Guisan A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006;33:1677–1688. doi: 10.1111/j.1365-2699.2006.01584.x. DOI
IPCC . Global Warming of 1.5 °C (Summary for Policymakers) World Meteorological Organization; Geneva, Switzerland: 2008.
Aguirre-Liguori J.A., Ramírez-Barahona S., Gaut B.S. The evolutionary genomics of species’ responses to climate change. Nat. Ecol. Evol. 2021;5:1350–1360. doi: 10.1038/s41559-021-01526-9. PubMed DOI
Araújo M.B., New M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007;22:42–47. doi: 10.1016/j.tree.2006.09.010. PubMed DOI
Nagy L., Grabherr G. The Biology of Alpine Habitats. Oxford University Press; Oxford, UK: 2009.
Lorite J., Lamprecht A., Peñas J., Rondinel-Mendoza K., Fernandez-Calzado R., Benito B., Cañadas E. Altitudinal patterns and changes in the composition of high mountain plant communities. In: Zamora R., Oliva M., editors. The Landscape of the Sierra Nevada. 1st ed. Springer Nature Switzerland AG; Cham, Switzerland: 2022. DOI
Peñas J., Pérez-García F., Mota J.F. Patterns of endemic plants and biogeography of the Baetic high mountains (south Spain) Acta Bot. Gall. 2005;152:247–360. doi: 10.1080/12538078.2005.10515494. DOI
Médail F., Diadema K. Glacial refugia influence plant diversity patterns in the Mediterranean basin. J. Biogeogr. 2009;36:1333–1345. doi: 10.1111/j.1365-2699.2008.02051.x. DOI
Cañadas E.M., Giuseppe F., Peñas J., Lorite J., Mattana E., Bachetta G. Hotspots within hotspots: Endemic plant richness, environmental drivers, and implications for conservation. Biol. Conserv. 2014;170:282–291. doi: 10.1016/j.biocon.2013.12.007. DOI
Peñas J., Lorite J. Biología de la Conservación de las Plantas de Sierra Nevada. Editorial Universidad de Granada; Granada, Spain: 2019.
Bañares Á., Blanca G., Güemes J., Moreno J.C., Ortiz S. Atlas de Flora Vascular Amenazada de España. Dirección General de Medio Natural y Política Forestal. Sociedad Española de Biología de la Conservación de Plantas; Madrid, Spain: 2011.
Peñas J., Lorite J. Moehringia fontqueri Pau. In: Bañares A., Blanca G., Güemes J., Moreno J.C., Ortiz S., editors. Atlas y Libro Rojo de la Flora Vascular Amenazada de España. 1st ed. Dirección General de Medio Natural y Política Forestal, Sociedad Española de Biología de la Conservación de Plantas; Madrid, Spain: 2003. pp. 788–789.
Lee-Yaw J.A., McCune J.L., Pironon S., Seema N.S. Species distribution models rarely predict the biology of real populations. Ecography. 2021;2022:e05877. doi: 10.1111/ecog.05877. DOI
Burgess N.D., Balmford A., Cordeiro N.J., Fjeldså J., Küper W., Rahbek C., Sanderson E.W., Scharlemann J.P.W., Sommer J.H., Williams P.H. Correlations among species distributions, human density and human infrastructure across the high biodiversity tropical mountains of Africa. Biol. Conserv. 2007;134:164–177. doi: 10.1016/j.biocon.2006.08.024. DOI
Giménez-Benavides L., Escudero A., García-Camacho R., García-Fernández A., Iriondo J.M., Lara-Romero C., Morente-López J. How does climate change affect regeneration of Mediterranean high-mountain plants? An integration and synthesis of current knowledge. Plant Biol. 2018;20:50–62. doi: 10.1111/plb.12643. PubMed DOI
Scheepens J.F., Stöcklin J. Flowering phenology and reproductive fitness along a mountain slope: Maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia. 2013;171:679–691. doi: 10.1007/s00442-012-2582-7. PubMed DOI
Vitasse Y., Ursenbacher S., Klein G., Bohnenstengel T., Chittaro Y., Delestrade A., Monnerat C., Rebetez M., Rixen C., Strebel N., et al. Phenological and elevational shifts of plants, animals and fungi under climate change in the European Alps. Biol. Rev. 2021;96:1816–1835. doi: 10.1111/brv.12727. PubMed DOI
Gordo O., Sanz J.J. Impact of climate change on plant phenology in Mediterranean ecosystems. Glob. Change Biol. 2010;16:1082–1106. doi: 10.1111/j.1365-2486.2009.02084.x. DOI
Gogol-Prokurat M. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol. Appl. 2011;21:33–47. doi: 10.1890/09-1190.1. PubMed DOI
DeMarche M.L., Doak D.F., Morris W.F. Incorporating local adaptation into forecasts of species’ distribution and abundance under climate change. Glob. Change Biol. 2019;25:775–793. doi: 10.1111/gcb.14562. PubMed DOI
Leandro C., Jay-Robert P., Mériguet B., Houard X., Renner I.W. Is my sdm good enough? insights from a citizen science dataset in a point process modeling framework. Ecol. Model. 2020;438:109283. doi: 10.1016/j.ecolmodel.2020.109283. DOI
Díaz de la Guardia C., Mota J.F., Valle F. A new taxon in the genus Moehringia (Caryophyllaceae) Plant Syst. Evol. 1991;177:27–38. doi: 10.1007/BF00937824. DOI
Bradie J., Leung B. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. J. Biogeogr. 2017;44:1344–1361. doi: 10.1111/jbi.12894. DOI
Guillera-Arroita G. Modelling of species distributions, range dynamics and communities under imperfect detection: Advances, challenges and opportunities. Ecography. 2016;40:281–295. doi: 10.1111/ecog.02445. DOI
Peñas J., Benito B., Lorite J., Ballesteros M., Cañadas E.M., Martínez-Ortega M. Habitat fragmentation in arid zones: A case study of Linaria nigricans under land use changes (SE Spain) Environ. Manag. 2011;48:168–176. doi: 10.1007/s00267-011-9663-y. PubMed DOI
Peñas J., Lorite J. Moehringia fontqueri. The IUCN Red List of Threatened Species. Version 2015.1. 2013. [(accessed on 16 September 2020)]. Available online: www.iucnredlist.org.
Qin A., Liu B., Guo Q., Bussmann R.W., Ma F., Jian Z., Xu G., Pei S. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from southwestern China. Glob. Ecol. Conserv. 2017;10:139–146. doi: 10.1016/j.gecco.2017.02.004. DOI
Fois M., Cuena-Lombraña A., Fenu G., Bacchetta G. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecol. Model. 2018;385:124–132. doi: 10.1016/j.ecolmodel.2018.07.018. DOI
Pepin N., Bradley R.S., Diaz H.F., Baraer M., Caceres E.B., Forsythe N., Fowler H., Greenwood G., Hashmi M.Z., Liu X.D., et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change. 2015;5:424–430. doi: 10.1038/nclimate2563. DOI
Blanca G., Cueto M., Martínez-Lirola M.J., Molero-Mesa J. Threatened vascular flora of Sierra Nevada (southern Spain) Biol. Conserv. 1998;85:269–285. doi: 10.1016/S0006-3207(97)00169-9. DOI
Huelber K., Gottfried M., Pauli H. Phenological Responses of Snowbed Species to Snow Removal Dates in the Central Alps: Implications for Climate Warming. Arct. Antarct. Alp. Res. 2006;38:99–103. doi: 10.1657/1523-0430(2006)038[0099:PROSST]2.0.CO;2. DOI
Post E.S., Pedersen C., Wilmers C.C., Forchhammer M.C. Phenological sequences reveal aggregate life history response to climate warming. Ecology. 2008;89:363–370. doi: 10.1890/06-2138.1. PubMed DOI
Abdelaal M., Fois M., Fenu G., Bacchetta G. Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecol. Inf. 2019;50:68–75. doi: 10.1016/j.ecoinf.2019.01.003. DOI
Jiménez-García D., Peterson A.T. Climate change impact on endangered cloud forest tree species in Mexico. Rev. Mex. Biodivers. 2019;90:e902781. doi: 10.22201/ib.20078706e.2019.90.2781. DOI
Erfanian M.B., Sagharyan M., Memariani F., Ejtehadi H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 2021;11:1–13. doi: 10.1038/s41598-021-88577-x. PubMed DOI PMC
Pitelka L.F. Plant Migration Workshop Group. Plant Migration and Climate Change: A more realistic portrait of plant migration is essential to predicting biological responses to global warming in a world drastically altered by human activity. Am. Sci. 1997;85:464–473.
Parmesan C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. 2006;37:637–669. doi: 10.1146/annurev.ecolsys.37.091305.110100. DOI
Dudley L.S., Arroyo M.T., Fernández-Murillo M.P. Physiological and fitness response of flowers to temperature and water augmentation in a high Andean geophyte. Environ. Exp. Bot. 2018;150:1–8. doi: 10.1016/j.envexpbot.2018.02.015. DOI
Hussain S., Lu L., Mubeen M., Nasim W., Karuppannan S., Fahad S., Tariq A., Mousa B.G., Mumtaz F., Aslam M. Spatiotemporal variation in land use land cover in the response to local climate change using multispectral remote sensing data. Land. 2022;11:595. doi: 10.3390/land11050595. DOI
Shen X., Liu B., Jiang M., Lu X. Marshland loss warms local land surface temperature in China. Geophys. Res. Lett. 2020;47:e2020GL087648. doi: 10.1029/2020GL087648. DOI
Shen X., Liu Y., Zhang J., Wang Y., Ma R., Liu B., Lu X., Jiang M. Asymmetric impacts of diurnal warming on vegetation carbon sequestration of marshes in the Qinghai Tibet Plateau. Glob. Biogeochem. Cycles. 2022;36:e2022GB007396. doi: 10.1029/2022GB007396. DOI
Pérez-Palazón M.J., Pimentel R., Herrero J., Aguilar C., Perales J.M., Polo M.J. Extreme values of snow-related variables in Mediterranean regions: Trends and long-term forecasting in Sierra Nevada (Spain) Proc. IAHS. 2015;369:157–162. doi: 10.5194/piahs-369-157-2015. DOI
Burd M. Bateman’s Principle and Plant Reproduction: The Role of Pollen Limitation in Fruit and Seed Set. Bot. Rev. 1994;60:83–139. doi: 10.1007/BF02856594. DOI
R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2020. [(accessed on 24 January 2020)]. Available online: https://www.R-project.org/
de Mendiburu F. Agricolae Statistical Procedures for Agricultural Research. R Package Version 1.3-1. 2019. [(accessed on 24 January 2020)]. Available online: https://CRAN.R-project.org/package=agricolae.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; New York, NY, USA: 2016.
Brooks M.E., Kristensen K., van Benthem K.J., Magnusson A., Berg C.W., Nielsen A., Skaug H.J., Mächler M., Bolker B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017;9:378–400. doi: 10.32614/RJ-2017-066. DOI
Hothorn T., Bretz F., Westfall P., Heiberger R.M. multcomp: Simultaneous Inference in General Parametric Models. R Package Version 1.0-0. 2008. [(accessed on 24 January 2020)]. Available online: http://CRAN.R-project.org. PubMed
Hartig F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. 2021. [(accessed on 24 January 2020)]. Available online: https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html.
Farr T.G., Rosen P.A., Caro E., Crippen R., Duren R., Hensley S., Kobrick M., Paller M., Rodriguez E., Roth L., et al. The shuttle radar topography mission. Rev. Geophys. 2007;2:RG2004. doi: 10.1029/2005RG000183. DOI
NASA JPL NASADEM Merged DEM Global 1 Arc Second V001 [Data Set] [(accessed on 11 November 2019)];NASA EOSDIS Land Processes DAAC. 2020 Available online: https://data.nasa.gov/dataset/NASADEM-Merged-DEM-Global-1-arc-second-V001/dqg3-mwid/data.
Huete A., Didan K., Miura T., Rodriguez E.P., Gao X., Ferreira L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002;83:195–213. doi: 10.1016/S0034-4257(02)00096-2. DOI
Riggs G.A., Hall D.K., Salomonson V.V. A snow index for the Landsat thematic mapper and moderate resolution imaging spectroradiometer; Proceedings of the IGARSS’94-1994 IEEE International Geoscience and Remote Sensing Symposium; Pasadena, CA, USA. 8–12 August 1994; DOI
Gao B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996;58:257–266. doi: 10.1016/S0034-4257(96)00067-3. DOI
Jin M., Dickinson R.E. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett. 2010;5:044004. doi: 10.1088/1748-9326/5/4/044004. DOI
Austin M.P., Van Niel K.P. Improving species distribution models for climate change studies: Variable selection and scale. J. Biogeogr. 2011;38:1–8. doi: 10.1111/j.1365-2699.2010.02416.x. DOI
Bruce P., Bruce A. Practical Statistics for Data Scientists. O’Reilly Media, Inc.; Sebastopol, CA, USA: 2017.
Fox J. Applied Regression Analysis and Generalized Linear Models. Sage Publications; Thousand Oaks, CA, USA: 2016.
Fox J., Monette G. Generalized collinearity diagnostics. J. Am. Stat. Assoc. 1992;87:178–183. doi: 10.1080/01621459.1992.10475190. DOI
Fox J., Weisberg S. An R Companion to Applied Regression. Sage Publications; Thousand Oaks, CA, USA: 2011.
Heiberger R.M. HH: Statistical Analysis and Data Display: Heiberger and Holland. R Package; Vienna, Austria: 2020.
Hijmans R.J. raster: Geographic Data Analysis and Modeling. R Package; Vienna, Austria: 2018. R Package Version 216, 2.8-4.
James G., Witten D., Hastie T., Tibshirani R. An Introduction to Statistical Learning: With Applications in R. Springer Publishing Company; Berlin/Heidelberg, Germany: 2014.
Dormann C.F., Elith J., Bacher S., Buchmann C., Carl G., Carré G., García Marquéz J.R., Gruber B., Lafourcade B., Leitão P.J., et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography. 2013;36:27–46. doi: 10.1111/j.1600-0587.2012.07348.x. DOI
Phillips S.J., Anderson R.P., Schapire R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006;190:231–259. doi: 10.1016/j.ecolmodel.2005.03.026. DOI
Austin M.P. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecol. Model. 2002;157:101–118. doi: 10.1016/S0304-3800(02)00205-3. DOI
Elith J., Phillips S.J., Hastie T., Dudík M., Chee Y.E., Yates C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011;17:43–57. doi: 10.1111/j.1472-4642.2010.00725.x. DOI
Elith J., Graham H., Anderson C.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151. doi: 10.1111/j.2006.0906-7590.04596.x. DOI
Morales N.S., Fernández I.C., Baca-González V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ. 2017;5:e3093. doi: 10.7717/peerj.3093. PubMed DOI PMC
Pearson R.G., Raxworthy C.J., Nakamura M., Peterson A.T. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 2007;34:102–117. doi: 10.1111/j.1365-2699.2006.01594.x. DOI
Swets J.A. Measuring the accuracy of diagnostic systems. Science. 1988;240:1285–1293. doi: 10.1126/science.3287615. PubMed DOI
Ashcroft M.B., French K.O., Chisholm L.A. An evaluation of environmental factors affecting species distributions. Ecol. Model. 2001;222:524–531. doi: 10.1016/j.ecolmodel.2010.10.003. DOI
QGIS Development Team QGIS Geographic Information System. 2020. Open Source Geospatial Foundation Project. [(accessed on 15 May 2022)]. Available online: https://www.qgis.org/es/site/
Araújo M.B., Anderson R.P., Barbosa A.M., Beale C.M., Dormann C.F., Early R., Garcia R.A., Guisan A., Maiorano L., Naimi B., et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 2019;5:eaat4858. doi: 10.1126/sciadv.aat4858. PubMed DOI PMC
Jump A.S., Woodward F.I. Seed production and population density decline approaching the range-edge of Cirsium species. New Phytol. 2003;160:349–358. doi: 10.1046/j.1469-8137.2003.00873.x. PubMed DOI
Guo Q.F., Taper M., Schoenberger M., Brandle J. Spatial-temporal population dynamics across species range: From centre to margin. Oikos. 2005;108:47–57. doi: 10.1111/j.0030-1299.2005.13149.x. DOI
Hannah L., Midgley G.F., Lovejoy T.E., Bond W.J., Bush M., Lovett J.C., Scott D., Woodward F.I. Conservation of Biodiversity in a Changing Climate. Conserv. Biol. 2002;16:264–268. doi: 10.1046/j.1523-1739.2002.00465.x. PubMed DOI