Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27143226
PubMed Central
PMC4855180
DOI
10.1038/srep24881
PII: srep24881
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- klimatické změny * MeSH
- populační dynamika * MeSH
- rostliny klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Indie MeSH
A rapid warming in Himalayas is predicted to increase plant upper distributional limits, vegetation cover and abundance of species adapted to warmer climate. We explored these predictions in NW Himalayas, by revisiting uppermost plant populations after ten years (2003-2013), detailed monitoring of vegetation changes in permanent plots (2009-2012), and age analysis of plants growing from 5500 to 6150 m. Plant traits and microclimate variables were recorded to explain observed vegetation changes. The elevation limits of several species shifted up to 6150 m, about 150 vertical meters above the limit of continuous plant distribution. The plant age analysis corroborated the hypothesis of warming-driven uphill migration. However, the impact of warming interacts with increasing precipitation and physical disturbance. The extreme summer snowfall event in 2010 is likely responsible for substantial decrease in plant cover in both alpine and subnival vegetation and compositional shift towards species preferring wetter habitats. Simultaneous increase in summer temperature and precipitation caused rapid snow melt and, coupled with frequent night frosts, generated multiple freeze-thaw cycles detrimental to subnival plants. Our results suggest that plant species responses to ongoing climate change will not be unidirectional upward range shifts but rather multi-dimensional, species-specific and spatially variable.
Biology Centre The Czech Academy of Sciences Branisovska 31 370 05 Ceske Budejovice Czech Republic
Institute of Botany The Czech Academy of Sciences Zamek 1 252 43 Pruhonice Czech Republic
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Zobrazit více v PubMed
Gonzalez P., Neilson R. P., Lenihan J. M. & Drapek R. J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Global Ecol. Biogeogr. 19, 755–768 (2010).
IPCC 2013, Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: (eds. Stocker, T. F. et al.), 1535 pp.(Cambridge University Press & New York, 2013).
Elmendorf S. C. et al. Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time. Ecol. Let. 15, 164–175 (2012). PubMed
Gottfried M. et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2, 111–115 (2012).
Pauli H. et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 20, 353–355 (2012). PubMed
Chen I. C., Hill J. K., Ohlemuller R., Roy D. B. & Thomas C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011). PubMed
Grytnes J. A. et al. Identifying the driving factors behind observed elevational range shifts on European mountains. Global Ecol. Biogeogr. 23, 876–884 (2014).
Dolezal J. et al. Primary succession following deglaciation at Koryto Glacier Valley, Kamchatka. Arct. Antarct. Alp. Res. 40, 309–322 (2008).
Parmesan C. & Yohe G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003). PubMed
Callaghan T. V., Christensen T. R. & Jantze E. J. Plant and Vegetation Dynamics on Disko Island, West Greenland: Snapshots Separated by Over 40 Years. Ambio 40, 624–637 (2011). PubMed PMC
Dolezal J., Altman J., Vetrova V. P. & Hara T. Linking two centuries of tree growth and glacier dynamics with climate changes in Kamchatka. Clim. Chang. 124, 207–220 (2014).
Saxe H., Cannell M. G. R., Johnsen Ø., Ryan M. G. & Vourlitis G. Tree and forest functioning in response to global warming. New Phytol. 149, 369–399 (2001). PubMed
Klanderud K. & Birks H. J. B. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. The Holocene 13, 1–6 (2003).
Felde V. A., Kapfer J. & Grytnes J. Upward shift in elevational plant species ranges in Sikkilsdalen, central Norway. Ecography 35, 922–932 (2012).
Dullinger S. et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Change 2, 619–622 (2012).
Brown J., Ferrians O. J. Jr., Heginbottom J. A. & Melnikov E. S. Circum-arctic map of permafrost and ground ice conditions. Boulder, CO: National Snow and Ice Data Center. Digital media (1998).
Liancourt P. et al. Plant response to climate change varies with topography, interactions with neighbors, and ecotype. Ecology 94, 444–453 (2013). PubMed
Liang E., Dawadi B., Pederson N. & Eckstein D. Is the growth of birch at the upper timberline in the Himalayas limited by moisture or by temperature? Ecology 95, 2453–2465 (2014).
Zhang Y. et al. Extreme precipitation patterns reduced terrestrial ecosystem production across biomes. J. Geophys. Res. Biogeosci. 118, 148–157 (2013).
Easterling D. R., Meehl G. A., Parmesan C., Changnon S. A. & Mearns L. O. Climate extremes: observations, modelling, and impacts. Science 289, 2068–2074 (2000). PubMed
Callaghan T. V. et al. Arctic Tundra and Polar Desert Ecosystems. In: Arctic Climate Impact Assessment. Arctic Council. pp. 243–352 (Cambridge University, 2005).
Grime J. P. Plant Strategies and Vegetation Processes. (Wiley, 1979).
Michalet R., Schöb Ch., Lortie C. J., Brooker R. W. & Callaway R. M. Partitioning net interactions among plants along altitudinal gradients to study community responses to climate change. Funct. Ecol. 28, 75–86 (2014).
Dvorsky M. et al. Vascular plants at extreme elevations in eastern Ladakh, northwest Himalayas. Plant Ecol. Divers. 8, 571–584 (2015).
Bhutiyani M. R., Kale V. S. & Pawar N. J. Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim. Change 85, 159–177 (2007).
Schmidt S. & Nüsser M. Changes of High Altitude Glaciers from 1969 to 2010 in the Trans-Himalayan Kang Yatze Massif, Ladakh, Northwest India. Arct. Antarct. Alp. Res. 44, 107–121 (2012).
Shrestha U. B., Gautam S. & Bawa K. S. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLos ONE 7, e36741 (2012). PubMed PMC
Hobley D. E. J., Sinclair H. D. & Mudd S. M. Reconstruction of a major storm event from its geomorphic signature: The Ladakh floods, 6 August 2010. Geology 40, 483–486 (2012).
Thayyen R. J., Dimri A. P., Kumar P. & Agnihotri G. Study of cloudburst and flash floods around Leh, India, during August 4–6, 2010. Nat. Hazards 65, 2175–2204 (2013).
Westoby M. & Wright I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006). PubMed
Körner C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. (Springer, 2003).
Körner C. Coldest places on earth with angiosperm plant life. Alp. Bot. 121, 11–22 (2011).
Schweingruber F. H., Börner A. & Schulze E. D. Atlas of stem anatomy in herbs shrubs and trees Vol.1 (Springer, 2011).
Nobis M. P. & Schweingruber F. H. Adult age of vascular plant species along an elevational land-use and climate gradient. Ecography 36, 1076–1085 (2013).
Grabherr G., Gottfried M. & Pauli H. Climate effects on mountain plants. Nature 369, 448–448 (1994). PubMed
Lenoir J., Gégout J. C., Marquet P. A., de Ruffray P. & Brisse H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768–1771 (2008). PubMed
Holzinger B., Hulber K., Camenisch M. & Grabherr G. Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol. 195, 179–196 (2008).
Telwala Y., Brook B. W., Manish K. & Pandit M. K. Climate-Induced Elevational Range Shifts and Increase in Plant Species Richness in a Himalayan Biodiversity Epicentre. PLoS ONE 8, e57103 (2013). PubMed PMC
Schweingruber F. H., Říha P. & Doležal J. Variation in Stem Anatomical Characteristics of Campanuloideae Species in Relation to Evolutionary History and Ecological Preferences. PLoS ONE 9, e88199 (2014). PubMed PMC
Valluru R. & van den Ende W. Plant fructans in stress environments: emerging concepts and future prospects. J. Exp. Bot. 59, 2905–2916 (2008). PubMed
Miehe G. et al. Ecological stability during the LGM and the mid-Holocene in the alpine steppes of Tibet? Quat. Res. 76, 243–252 (2011).
Klimes L. & Dolezal J. An experimental assessment of the upper elevational limit of flowering plants in the Western Himalayas. Ecography 33, 590–596 (2010).
Neuner G. & Hacker J. Ice formation and propagation in alpine plants. in: Plants in alpine regions: cell physiology of adaption and survival strategies. (eds Lütz C.) pp. 163–174 (Springer, 2012).
Kreyling J., Beierkuhnleina C. & Jentschb A. Effects of soil freeze–thaw cycles differ between experimental plant communities. Basic App. Ecol. 11, 65–75 (2010).
Dvorsky M., Dolezal J., de Bello F., Klimesova J. & Klimes J. Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Appl. Veg. Sci. 14, 132–147 (2011).
Harris N. The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 241, 4–15 (2006).
Janatkova K. et al. Community structure of soil phototrophs along environmental gradients in arid Himalaya. Environ. Microbiol. 15, 2505–2516 (2013). PubMed
Klimes L. Life-forms and clonality of vascular plants along an altitudinal gradient in E Ladakh (NW Himalayas). Basic App. Ecol. 4, 317–328 (2003).
Dvorsky M. et al. Testing the stress-gradient hypothesis at the roof of the world: effects of the cushion plant Thylacospermum caespitosum on species assemblages. PLoS ONE 8, e53514 (2013). PubMed PMC
Klimesova J., Dolezal J., Dvorsky M., de Bello F. & Klimes L. Clonal growth forms in eastern Ladakh, Western Himalayas: classification and habitat preferences. Folia Geobot. 46, 191–217 (2011).
Gärtner H. & Schweingruber F. H. Microscopic preparation techniques for plant stem analysis. (Kessel Verlag, 2013).
Chlumska Z., Janecek S. & Dolezal J. How to Preserve Plant Samples for Carbohydrate Analysis? Test of Suitable Methods Applicable in Remote Areas. Folia Geobot. 49, 1–15 (2014).
Farquhar G. D., Oleary M. H. & Berry J. A. On the relationship between carbon isotope discrimination and the inter-cellular carbon-dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121–137 (1982).
Huisman J., Olff H. & Fresco L. F. M. A hierarchical set of models for species response analysis. J. Veg. Sci. 4, 37–46 (1993).
Klimes L. & Dickore W. B. Flora of Ladakh (Jammu and Kashmir, India)–a preliminary checklist (2006). Available at: http://wwwbutbncascz/klimes (Accessed: 5 March 2015).
Bates D., Maechler M., Bolker B. & Walker S. lme4: Linear mixed-effects models using Eigen and S4. R package version 1, 1–7 (2014).
Core Team. R. R: A language and environment for statistical computing R Foundation for Statistical Computing. –Vienna, Austria ISBN 3-900051-07-0, (2013). Available at: http://wwwR-projectorg/.
ter Braak C. J. F. & Smilauer P. Canoco reference manual and users’s guide: sofware for ordination (version 5.0). Ithaca, NY, USA (Microcomputer Power, 2012).
Hothorn T., Hornik K. & Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15, 651–674 (2006).
Reply to: Biogeographic implications of plant stature and microclimate in cold regions
Global patterns of vascular plant alpha diversity
Biogeographic implication of temperature-induced plant cell wall lignification
Early Evidence of Shifts in Alpine Summit Vegetation: A Case Study From Kashmir Himalaya
Plant apomixis is rare in Himalayan high-alpine flora
Fungal root symbionts of high-altitude vascular plants in the Himalayas