Biogeographic implication of temperature-induced plant cell wall lignification

. 2022 Jul 29 ; 5 (1) : 767. [epub] 20220729

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35906325
Odkazy

PubMed 35906325
PubMed Central PMC9338036
DOI 10.1038/s42003-022-03732-y
PII: 10.1038/s42003-022-03732-y
Knihovny.cz E-zdroje

More than 200 years after von Humboldt's pioneering work on the treeline, our understanding of the cold distribution limit of upright plant growth is still incomplete. Here, we use wood anatomical techniques to estimate the degree of stem cell wall lignification in 1770 plant species from six continents. Contrary to the frequent belief that small plants are less lignified, we show that cell wall lignification in 'woody' herbs varies considerably. Although trees and shrubs always exhibit lignified cell walls in their upright stems, small plants above the treeline may contain less lignin. Our findings suggest that extremely cold growing season temperatures can reduce the ability of plants to lignify their secondary cell walls. Corroborating experimental and observational evidence, this study proposes to revisit existing theories about the thermal distribution limit of upright plant growth and to consider biochemical and biomechanical factors for explaining the global treeline position.

Erratum v

PubMed

Komentář v

PubMed

Komentář v

PubMed

Zobrazit více v PubMed

Körner C. The cold range limit of trees. Trends Ecol. Evo. 2021;36:979–989. PubMed

Körner, C. Alpine Treelines (Springer, 2012).

Miehe G, Miehe S, Vogel J, Co S, Duo L. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 2007;27:169–173.

Hoch G, Körner C. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct. Ecol. 2005;19:941–951.

von Humboldt, A. & Bonpland, A. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer: auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind. Tübingen, Bey F.G. Cotta (1807).

Körner C. Climatic treelines: conventions, global patterns, causes. Erdkunde. 2007;61:315–324.

Piermattei A, Crivellaro A, Carrer M, Urbinati C. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees Struct. Funct. 2015;29:613–620.

Körner C, et al. Life at 0 °C: the biology of the alpine snowbed plant Soldanella pulsatilla. Alp. Bot. 2019;129:63–80.

Crivellaro A, Büntgen U. New evidence of thermally-constraint plant cell wall lignification. Trends Plant Sci. 2020;24:322–324. PubMed

Büntgen U, et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 2015;103:489–501.

Dolezal J, et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 2016;6:24881. PubMed PMC

Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. Biosci. 1997;47:235–242.

Koch GW, Sillett SC, Jennings GM, Davis SD. The limits to tree height. Nature. 2004;428:851–854. PubMed

Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2003).

Scherrer D, Körner C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 2010;16:2602–2613.

Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Planta. 2013;147:46–54. PubMed

Plomion C, Leprovost G, Stokes A. Wood formation in trees. Plant Physiol. 2001;127:1513–1523. PubMed PMC

Rossi S, Deslauriers A, Anfodillo T, Carraro V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia. 2007;152:1–12. PubMed

Moura JCMS, Bonine CAV, Viana JOF, Dornelas MC, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 2010;52:360–376. PubMed

Weng JK, Chapple C. The origin and evolution of lignin biosynthesis. N. Phytol. 2010;187:273–285. PubMed

Niklas KJ, Cobb ED, Matas AJ. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J. Exp. 2017;68:5261–5269. PubMed

Popper ZA, et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 2011;62:567–590. PubMed

Piquemal J, et al. Down regulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 1998;13:71–83.

Renault H, Werck-Reichhart D, Weng J-K. Harnessing lignin evolution for biotechnological applications. Curr. Opin. Biotechnol. 2019;56:105–111. PubMed

Schenk HJ, Espino S, Rich-Cavazos SM, Jansen S. From the sap’s perspective: The nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 2018;105:172–185. PubMed

Polo CC, et al. Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Sci. Rep. 2020;10:6023. PubMed PMC

Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. Ann. Bot. 2018;121:1107–1125. PubMed PMC

Campbell MM, Sederoff RR. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants) Plant Physiol. 1996;110:3–13. PubMed PMC

Schweingruber FH, Büntgen U. What is ‘wood’ – An anatomical re-definition. Dendrochronologia. 2013;31:187–191.

Ellenberg H, Mueller-Dombois D. A key to Raunkiaer plant life forms with revised subdivisions. Ber. Geobot. Inst. ETH Z.ürich. 1967;37:56–73.

Kim WJ, Campbell AG, Koch P. Chemical variation in Lodgepole pine with latitude, elevation, and diameter class . Prod. J. 1989;39:7–12.

Gindl W, Grabner M, Wimmer R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, Struct. Funct. 2000;14:409–414.

Schenker G, Lens A, Körner C, Hoch G. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol. 2014;34:302–313. PubMed

Nagelmüller S, Hiltbrunner E, Körner C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants. 2017;9:plx054. PubMed PMC

Ji H, et al. The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Gen. 2015;11:e1005471. PubMed PMC

Büntgen U. Re-thinking the boundaries of dendrochronology. Dendrochronologia. 2019;53:1–4.

Piermattei A, et al. A millennium-long ‘Blue-Ring’ chronology from the Spanish Pyrenees reveals sever ephemeral summer cooling after volcanic eruptions. Environ. Res. Lett. 2020;15:124016.

Montwé D, Isaac-Rentin M, Hamman A, Spiecker H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Comm. 2018;9:1574. PubMed PMC

Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higher plants. Ann. Bot. 2015;115:1053–1074. PubMed PMC

Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Cri. Rev. Biochem. Mol. Biol. 2014;49:212–241. PubMed

Liu Q, Luo L, Zheng L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018;19:335. PubMed PMC

Kumar M, Campbell L, Turner S. Secondary cell walls: biosynthesis and manipulation. J. Exp. Bot. 2016;67:515–531. PubMed

Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 2001;47:239–274. PubMed

Petit G, Anfodillo T, Carraro V, Grani F, Carrer M. Hydraulic constraints limit height growth in trees at high altitude. N. Phytol. 2010;189:241–252. PubMed

Li L, et al. Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. Proc. Natl Acad. Sci. USA. 2003;100:4939–4944. PubMed PMC

Baldacci-Cresp F, et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification. Plant J. 2020;102:1074–1089. PubMed

Körner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia. 1998;115:445–459. PubMed

Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).

Büntgen U, Psomas A, Schweingruber FH. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. J. Veg. Sci. 2014;25:967–977.

Körner C. Coldest places on earth with angiosperm plant life. Alp. Bot. 2011;121:11–22.

GBIF.org. GBIF Occurrence Download. 10.15468/dl.ms4hjt (2018).

Chamberlain, S., Ram, K. & Hart, T. Spocc: Interface to Specie Occurrence Data Sources, R package v.0.9.0. http://CRAN.R-project.org/package=spocc (2018).

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978.

Hijmans, R. J. Raster: geographic data analysis and modelling, R package v.2.2-12. http://CRAN.R-project.org/package=raster (2014).

Gärtner H, et al. A technical perspective in modern tree-ring research - How to overcome dendroecological and wood anatomical challenges. J. Vis. Exp. 2015;97:e52337. PubMed PMC

Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Techniques for Plant Stem Analysis (Verlag Kessel, 2013).

Ghislan B, Engel J, Clair B. Diversity of anatomical structure of tension wood among 242 tropical tree species. IAWA J. 2019;40:1–20.

Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 1 (Springer, 2011).

Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 2 (Springer, 2013).

Dolezal, J., Dvorsky, M., Börner, A., Wild, J. & Schweingruber, F. H. Anatomy, Age and Ecology of High Mountain Plants in Ladakh, the Western Himalaya (Springer International Publishing, 2018).

Schneider CA, Rasband WS, Eliceiri KW. NIH image to imageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC

Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software 559 for Ordination, Version 5.0 (Cambridge Univ. Press, 2012).

Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 (Cambridge Univ. Press, 2014).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...