Biogeographic implication of temperature-induced plant cell wall lignification
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35906325
PubMed Central
PMC9338036
DOI
10.1038/s42003-022-03732-y
PII: 10.1038/s42003-022-03732-y
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána MeSH
- buněčná stěna * MeSH
- dřevo MeSH
- lignin * MeSH
- rostliny MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- lignin * MeSH
More than 200 years after von Humboldt's pioneering work on the treeline, our understanding of the cold distribution limit of upright plant growth is still incomplete. Here, we use wood anatomical techniques to estimate the degree of stem cell wall lignification in 1770 plant species from six continents. Contrary to the frequent belief that small plants are less lignified, we show that cell wall lignification in 'woody' herbs varies considerably. Although trees and shrubs always exhibit lignified cell walls in their upright stems, small plants above the treeline may contain less lignin. Our findings suggest that extremely cold growing season temperatures can reduce the ability of plants to lignify their secondary cell walls. Corroborating experimental and observational evidence, this study proposes to revisit existing theories about the thermal distribution limit of upright plant growth and to consider biochemical and biomechanical factors for explaining the global treeline position.
Department of Biochemistry University of Cambridge CB2 1QW Cambridge United Kingdom
Department of Geography Faculty of Science Masaryk University 611 37 Brno Czech Republic
Department of Geography University of Cambridge CB2 3EN Cambridge United Kingdom
Global Change Research Institute CAS 603 00 Brno Czech Republic
Institute of Botany Academy of Sciences of the Czech Republic 379 01 Trebon Czech Republic
Swiss Federal Research Institute WSL 8903 Birmensdorf Switzerland
Zobrazit více v PubMed
Körner C. The cold range limit of trees. Trends Ecol. Evo. 2021;36:979–989. PubMed
Körner, C. Alpine Treelines (Springer, 2012).
Miehe G, Miehe S, Vogel J, Co S, Duo L. Highest treeline in the northern hemisphere found in southern Tibet. Mt. Res. Dev. 2007;27:169–173.
Hoch G, Körner C. Growth, demography and carbon relations of Polylepis trees at the world’s highest treeline. Funct. Ecol. 2005;19:941–951.
von Humboldt, A. & Bonpland, A. Ideen zu einer Geographie der Pflanzen nebst einem Naturgemälde der Tropenländer: auf Beobachtungen und Messungen gegründet, welche vom 10ten Grade nördlicher bis zum 10ten Grade südlicher Breite, in den Jahren 1799, 1800, 1801, 1802 und 1803 angestellt worden sind. Tübingen, Bey F.G. Cotta (1807).
Körner C. Climatic treelines: conventions, global patterns, causes. Erdkunde. 2007;61:315–324.
Piermattei A, Crivellaro A, Carrer M, Urbinati C. The “blue ring”: anatomy and formation hypothesis of a new tree-ring anomaly in conifers. Trees Struct. Funct. 2015;29:613–620.
Körner C, et al. Life at 0 °C: the biology of the alpine snowbed plant Soldanella pulsatilla. Alp. Bot. 2019;129:63–80.
Crivellaro A, Büntgen U. New evidence of thermally-constraint plant cell wall lignification. Trends Plant Sci. 2020;24:322–324. PubMed
Büntgen U, et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 2015;103:489–501.
Dolezal J, et al. Vegetation dynamics at the upper elevational limit of vascular plants in Himalaya. Sci. Rep. 2016;6:24881. PubMed PMC
Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. Biosci. 1997;47:235–242.
Koch GW, Sillett SC, Jennings GM, Davis SD. The limits to tree height. Nature. 2004;428:851–854. PubMed
Körner, C. Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (Springer, 2003).
Scherrer D, Körner C. Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 2010;16:2602–2613.
Begum S, Nakaba S, Yamagishi Y, Oribe Y, Funada R. Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. Physiol. Planta. 2013;147:46–54. PubMed
Plomion C, Leprovost G, Stokes A. Wood formation in trees. Plant Physiol. 2001;127:1513–1523. PubMed PMC
Rossi S, Deslauriers A, Anfodillo T, Carraro V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia. 2007;152:1–12. PubMed
Moura JCMS, Bonine CAV, Viana JOF, Dornelas MC, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 2010;52:360–376. PubMed
Weng JK, Chapple C. The origin and evolution of lignin biosynthesis. N. Phytol. 2010;187:273–285. PubMed
Niklas KJ, Cobb ED, Matas AJ. The evolution of hydrophobic cell wall biopolymers: from algae to angiosperms. J. Exp. 2017;68:5261–5269. PubMed
Popper ZA, et al. Evolution and diversity of plant cell walls: from algae to flowering plants. Annu. Rev. Plant Biol. 2011;62:567–590. PubMed
Piquemal J, et al. Down regulation of cinnamoyl CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J. 1998;13:71–83.
Renault H, Werck-Reichhart D, Weng J-K. Harnessing lignin evolution for biotechnological applications. Curr. Opin. Biotechnol. 2019;56:105–111. PubMed
Schenk HJ, Espino S, Rich-Cavazos SM, Jansen S. From the sap’s perspective: The nature of vessel surfaces in angiosperm xylem. Am. J. Bot. 2018;105:172–185. PubMed
Polo CC, et al. Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Sci. Rep. 2020;10:6023. PubMed PMC
Meents MJ, Watanabe Y, Samuels AL. The cell biology of secondary cell wall biosynthesis. Ann. Bot. 2018;121:1107–1125. PubMed PMC
Campbell MM, Sederoff RR. Variation in lignin content and composition (mechanisms of control and implications for the genetic improvement of plants) Plant Physiol. 1996;110:3–13. PubMed PMC
Schweingruber FH, Büntgen U. What is ‘wood’ – An anatomical re-definition. Dendrochronologia. 2013;31:187–191.
Ellenberg H, Mueller-Dombois D. A key to Raunkiaer plant life forms with revised subdivisions. Ber. Geobot. Inst. ETH Z.ürich. 1967;37:56–73.
Kim WJ, Campbell AG, Koch P. Chemical variation in Lodgepole pine with latitude, elevation, and diameter class . Prod. J. 1989;39:7–12.
Gindl W, Grabner M, Wimmer R. The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees, Struct. Funct. 2000;14:409–414.
Schenker G, Lens A, Körner C, Hoch G. Physiological minimum temperatures for root growth in seven common European broad-leaved tree species. Tree Physiol. 2014;34:302–313. PubMed
Nagelmüller S, Hiltbrunner E, Körner C. Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants. 2017;9:plx054. PubMed PMC
Ji H, et al. The Arabidopsis RCC1 family protein TCF1 regulates freezing tolerance and cold acclimation through modulating lignin biosynthesis. PLoS Gen. 2015;11:e1005471. PubMed PMC
Büntgen U. Re-thinking the boundaries of dendrochronology. Dendrochronologia. 2019;53:1–4.
Piermattei A, et al. A millennium-long ‘Blue-Ring’ chronology from the Spanish Pyrenees reveals sever ephemeral summer cooling after volcanic eruptions. Environ. Res. Lett. 2020;15:124016.
Montwé D, Isaac-Rentin M, Hamman A, Spiecker H. Cold adaptation recorded in tree rings highlights risks associated with climate change and assisted migration. Nat. Comm. 2018;9:1574. PubMed PMC
Barros J, Serk H, Granlund I, Pesquet E. The cell biology of lignification in higher plants. Ann. Bot. 2015;115:1053–1074. PubMed PMC
Hao Z, Mohnen D. A review of xylan and lignin biosynthesis: Foundation for studying Arabidopsis irregular xylem mutants with pleiotropic phenotypes. Cri. Rev. Biochem. Mol. Biol. 2014;49:212–241. PubMed
Liu Q, Luo L, Zheng L. Lignins: biosynthesis and biological functions in plants. Int. J. Mol. Sci. 2018;19:335. PubMed PMC
Kumar M, Campbell L, Turner S. Secondary cell walls: biosynthesis and manipulation. J. Exp. Bot. 2016;67:515–531. PubMed
Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W. Unravelling cell wall formation in the woody dicot stem. Plant Mol. Biol. 2001;47:239–274. PubMed
Petit G, Anfodillo T, Carraro V, Grani F, Carrer M. Hydraulic constraints limit height growth in trees at high altitude. N. Phytol. 2010;189:241–252. PubMed
Li L, et al. Combinatorial modification of multiple lignin traits in trees through multigene co-transformation. Proc. Natl Acad. Sci. USA. 2003;100:4939–4944. PubMed PMC
Baldacci-Cresp F, et al. A rapid and quantitative safranin-based fluorescent microscopy method to evaluate cell wall lignification. Plant J. 2020;102:1074–1089. PubMed
Körner C. A re-assessment of high elevation treeline positions and their explanation. Oecologia. 1998;115:445–459. PubMed
Landolt, E. et al. Flora indicativa: Okologische Zeigerwerte und biologische Kennzeichen zur Flora der Schweiz und der Alpen (Haupt, 2010).
Büntgen U, Psomas A, Schweingruber FH. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. J. Veg. Sci. 2014;25:967–977.
Körner C. Coldest places on earth with angiosperm plant life. Alp. Bot. 2011;121:11–22.
GBIF.org. GBIF Occurrence Download. 10.15468/dl.ms4hjt (2018).
Chamberlain, S., Ram, K. & Hart, T. Spocc: Interface to Specie Occurrence Data Sources, R package v.0.9.0. http://CRAN.R-project.org/package=spocc (2018).
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high-resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978.
Hijmans, R. J. Raster: geographic data analysis and modelling, R package v.2.2-12. http://CRAN.R-project.org/package=raster (2014).
Gärtner H, et al. A technical perspective in modern tree-ring research - How to overcome dendroecological and wood anatomical challenges. J. Vis. Exp. 2015;97:e52337. PubMed PMC
Gärtner, H. & Schweingruber, F. H. Microscopic Preparation Techniques for Plant Stem Analysis (Verlag Kessel, 2013).
Ghislan B, Engel J, Clair B. Diversity of anatomical structure of tension wood among 242 tropical tree species. IAWA J. 2019;40:1–20.
Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 1 (Springer, 2011).
Schweingruber, F. H., Börner, A. & Schulze, E. D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees Vol. 2 (Springer, 2013).
Dolezal, J., Dvorsky, M., Börner, A., Wild, J. & Schweingruber, F. H. Anatomy, Age and Ecology of High Mountain Plants in Ladakh, the Western Himalaya (Springer International Publishing, 2018).
Schneider CA, Rasband WS, Eliceiri KW. NIH image to imageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC
Ter Braak, C. J. F. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software 559 for Ordination, Version 5.0 (Cambridge Univ. Press, 2012).
Šmilauer, P. & Lepš, J. Multivariate Analysis of Ecological Data Using Canoco 5 (Cambridge Univ. Press, 2014).
Effect of climate on traits of dominant and rare tree species in the world's forests
The global distribution and drivers of wood density and their impact on forest carbon stocks
Reply to: Biogeographic implications of plant stature and microclimate in cold regions