Recombinant Acetylcholine Receptor Immunization Induces a Robust Model of Experimental Autoimmune Myasthenia Gravis in Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38534352
PubMed Central
PMC10969621
DOI
10.3390/cells13060508
PII: cells13060508
Knihovny.cz E-zdroje
- Klíčová slova
- complement, experimental autoimmune myasthenia gravis, murine model, myasthenia gravis,
- MeSH
- autoprotilátky MeSH
- experimentální autoimunitní myasthenia gravis * farmakoterapie metabolismus MeSH
- imunizace MeSH
- komplement MeSH
- myši MeSH
- nervosvalové spojení patologie MeSH
- receptory cholinergní * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- autoprotilátky MeSH
- komplement MeSH
- receptory cholinergní * MeSH
Myasthenia gravis (MG) is a prototypical autoimmune disease of the neuromuscular junction (NMJ). The study of the underlying pathophysiology has provided novel insights into the interplay of autoantibodies and complement-mediated tissue damage. Experimental autoimmune myasthenia gravis (EAMG) emerged as a valuable animal model, designed to gain further insight and to test novel therapeutic approaches for MG. However, the availability of native acetylcholine receptor (AChR) protein is limited favouring the use of recombinant proteins. To provide a simplified platform for the study of MG, we established a model of EAMG using a recombinant protein containing the immunogenic sequence of AChR in mice. This model recapitulates key features of EAMG, including fatigable muscle weakness, the presence of anti-AChR-antibodies, and engagement of the NMJ by complement and a reduced NMJ density. Further characterization of this model demonstrated a prominent B cell immunopathology supported by T follicular helper cells. Taken together, the herein-presented EAMG model may be a valuable tool for the study of MG pathophysiology and the pre-clinical testing of therapeutic applications.
Brain and Mind Center University of Sidney Sidney NSW 2050 Australia
Department of Neurology Palacky University Olomouc 77146 Olomouc Czech Republic
Zobrazit více v PubMed
Drachman D.B., Angus C.W., Adams R.N., Michelson J.D., Hoffman G.J. Myasthenic antibodies cross-link acetylcholine receptors to accelerate degradation. N. Engl. J. Med. 1978;298:1116–1122. doi: 10.1056/NEJM197805182982004. PubMed DOI
Nelke C., Stascheit F., Eckert C., Pawlitzki M., Schroeter C.B., Huntemann N., Mergenthaler P., Arat E., Öztürk M., Foell D., et al. Independent risk factors for myasthenic crisis and disease exacerbation in a retrospective cohort of myasthenia gravis patients. J. Neuroinflamm. 2022;19:89. doi: 10.1186/s12974-022-02448-4. PubMed DOI PMC
Vu T., Meisel A., Mantegazza R., Annane D., Katsuno M., Aguzzi R., Enayetallah A., Beasley K.N., Rampal N., Howard J.F. Terminal Complement Inhibitor Ravulizumab in Generalized Myasthenia Gravis. NEJM Evid. 2022;1:EVIDoa2100066. doi: 10.1056/EVIDoa2100066. PubMed DOI
Howard J.F., Bril V., Vu T., Karam C., Peric S., Margania T., Murai H., Bilinska M., Shakarishvili R., Smilowski M., et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): A multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 2021;20:526–536. doi: 10.1016/S1474-4422(21)00159-9. PubMed DOI
Morgan B.P., Chamberlain-Banoub J., Neal J.W., Song W., Mizuno M., Harris C.L. The membrane attack pathway of complement drives pathology in passively induced experimental autoimmune myasthenia gravis in mice. Clin. Exp. Immunol. 2006;146:294–302. doi: 10.1111/j.1365-2249.2006.03205.x. PubMed DOI PMC
Howard J.F. Myasthenia gravis: The role of complement at the neuromuscular junction. Ann. N. Y. Acad. Sci. 2018;1412:113–128. doi: 10.1111/nyas.13522. PubMed DOI
Losen M., Martinez-Martinez P., Molenaar P.C., Lazaridis K., Tzartos S., Brenner T., Duan R.-S., Luo J., Lindstrom J., Kusner L. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors--Recommendations for methods and experimental designs. Exp. Neurol. 2015;270:18–28. doi: 10.1016/j.expneurol.2015.03.010. PubMed DOI PMC
Lennon V.A., Lambert E.H., Leiby K.R., Okarma T.B., Talib S. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis. J. Immunol. 1991;146:2245–2248. doi: 10.4049/jimmunol.146.7.2245. PubMed DOI
Baggi F., Annoni A., Ubiali F., Milani M., Longhi R., Scaioli W., Cornelio F., Mantegazza R., Antozzi C. Breakdown of Tolerance to a Self-Peptide of Acetylcholine Receptor α-Subunit Induces Experimental Myasthenia Gravis in Rats 1. J. Immunol. 2004;172:2697–2703. doi: 10.4049/jimmunol.172.4.2697. PubMed DOI
Engel A.G., Tsujihata M., Lambert E.H., Lindstrom J.M., Lennon V.A. Experimental Autoimmune Myasthenia Gravis: A Sequential and Quantitative Study of the Neuromuscular Junction Ultrastructure and Electrophysiologic Correlations. J. Neuropathol. Exp. Neurol. 1976;35:569–587. doi: 10.1097/00005072-197609000-00008. PubMed DOI
Preuße C., Paesler B., Nelke C., Cengiz D., Müntefering T., Roos A., Amelin D., Allenbach Y., Uruha A., Dittmayer C., et al. Skeletal muscle provides the immunological micro-milieu for specific plasma cells in anti-synthetase syndrome-associated myositis. Acta Neuropathol. 2022;144:353–372. doi: 10.1007/s00401-022-02438-z. PubMed DOI PMC
Nelke C., Schroeter C.B., Theissen L., Preusse C., Pawlitzki M., Räuber S., Dobelmann V., Cengiz D., Kleefeld F., Roos A., et al. Senescent fibro-adipogenic progenitors are potential drivers of pathology in inclusion body myositis. Acta Neuropathol. 2023;146:725–745. doi: 10.1007/s00401-023-02637-2. PubMed DOI PMC
Sheng J.R., Li L.C., Prabhakar B.S., Meriggioli M.N. Acetylcholine receptor-alpha subunit expression in myasthenia gravis: A role for the autoantigen in pathogenesis? Muscle Nerve. 2009;40:279–286. doi: 10.1002/mus.21371. PubMed DOI PMC
Marques M.J., Conchello J.A., Lichtman J.W. From plaque to pretzel: Fold formation and acetylcholine receptor loss at the developing neuromuscular junction. J. Neurosci. 2000;20:3663–3675. doi: 10.1523/JNEUROSCI.20-10-03663.2000. PubMed DOI PMC
Walker L.S.K. The link between circulating follicular helper T cells and autoimmunity. Nat. Rev. Immunol. 2022;22:567–575. doi: 10.1038/s41577-022-00693-5. PubMed DOI PMC
Mitsdoerffer M., Lee Y., Jäger A., Kim H.-J., Korn T., Kolls J.K., Cantor H., Bettelli E., Kuchroo V.K. Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc. Natl. Acad. Sci. USA. 2010;107:14292–14297. doi: 10.1073/pnas.1009234107. PubMed DOI PMC
Nelke C., Spatola M., Schroeter C.B., Wiendl H., Lünemann J.D. Neonatal Fc Receptor-Targeted Therapies in Neurology. Neurotherapeutics. 2022;19:729–740. doi: 10.1007/s13311-021-01175-7. PubMed DOI PMC
Mantegazza R., Cordiglieri C., Consonni A., Baggi F. Animal models of myasthenia gravis: Utility and limitations. Int. J. Gen. Med. 2016;9:53–64. doi: 10.2147/IJGM.S88552. PubMed DOI PMC
Tuzun E., Berrih-Aknin S., Brenner T., Kusner L.L., Le Panse R., Yang H., Tzartos S., Christadoss P. Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization. Exp. Neurol. 2015;270:11–17. doi: 10.1016/j.expneurol.2015.02.009. PubMed DOI
Bryda E.C. The Mighty Mouse: The Impact of Rodents on Advances in Biomedical Research. Mo. Med. 2013;110:207–211. PubMed PMC
Gilhus N.E., Tzartos S., Evoli A., Palace J., Burns T.M., Verschuuren J.J.G.M. Myasthenia gravis. Nat. Rev. Dis. Primers. 2019;5:30. doi: 10.1038/s41572-019-0079-y. PubMed DOI
Yi J.S., Guptill J.T., Stathopoulos P., Nowak R.J., O’Connor K.C. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve. 2018;57:172–184. doi: 10.1002/mus.25973. PubMed DOI PMC
Christensson B., Biberfeld P., Matell G. B-cell compartment in the thymus of patients with myasthenia gravis and control subjects. Ann. N. Y. Acad. Sci. 1988;540:293–297. doi: 10.1111/j.1749-6632.1988.tb27079.x. PubMed DOI
Zhang P., Liu Y., Chen S., Zhang X., Wang Y., Zhang H., Li J., Yang Z., Xiong K., Duan S., et al. Distribution of multi-level B cell subsets in thymoma and thymoma-associated myasthenia gravis. Sci. Rep. 2024;14:2674. doi: 10.1038/s41598-024-53250-6. PubMed DOI PMC
Hu Y., Wang J., Rao J., Xu X., Cheng Y., Yan L., Wu Y., Wu N., Wu X. Comparison of peripheral blood B cell subset ratios and B cell-related cytokine levels between ocular and generalized myasthenia gravis. Int. Immunopharmacol. 2020;80:106130. doi: 10.1016/j.intimp.2019.106130. PubMed DOI
Fichtner M.L., Hoehn K.B., Ford E.E., Mane-Damas M., Oh S., Waters P., Payne A.S., Smith M.L., Watson C.T., Losen M., et al. Reemergence of pathogenic, autoantibody-producing B cell clones in myasthenia gravis following B cell depletion therapy. Acta Neuropathol. Commun. 2022;10:154. doi: 10.1186/s40478-022-01454-0. PubMed DOI PMC
Wang Z.Y., Huang J., Olsson T., He B., Link H. B cell responses to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis. J. Neurol. Sci. 1995;128:167–174. doi: 10.1016/0022-510X(94)00235-G. PubMed DOI
Schaffert H., Pelz A., Saxena A., Losen M., Meisel A., Thiel A., Kohler S. IL-17-producing CD4(+) T cells contribute to the loss of B-cell tolerance in experimental autoimmune myasthenia gravis. Eur. J. Immunol. 2015;45:1339–1347. doi: 10.1002/eji.201445064. PubMed DOI
Çebi M., Durmus H., Aysal F., Özkan B., Gül G.E., Çakar A., Hocaoglu M., Mercan M., Yentür S.P., Tütüncü M., et al. CD4+ T Cells of Myasthenia Gravis Patients Are Characterized by Increased IL-21, IL-4, and IL-17A Productions and Higher Presence of PD-1 and ICOS. Front. Immunol. 2020;11:809. doi: 10.3389/fimmu.2020.00809. PubMed DOI PMC
Yi Q., Åhlberg R., Pirskanen R., Lefvert A.K. Acetylcholine receptor-reactive T cells in myasthenia gravis: Evidence for the involvement of different subpopulations of T helper cells. J. Neuroimmunol. 1994;50:177–186. doi: 10.1016/0165-5728(94)90044-2. PubMed DOI
Huan X., Zhao R., Song J., Zhong H., Su M., Yan C., Wang Y., Chen S., Zhou Z., Lu J., et al. Increased serum IL-2, IL-4, IL-5 and IL-12p70 levels in AChR subtype generalized myasthenia gravis. BMC Immunol. 2022;23:26. doi: 10.1186/s12865-022-00501-8. PubMed DOI PMC
Severinson E. Identification of the IgG1 Induction Factor (Interleukin 4) Front. Immunol. 2014;5:628. doi: 10.3389/fimmu.2014.00628. PubMed DOI PMC
Ferretti E., Ponzoni M., Doglioni C., Pistoia V. IL-17 superfamily cytokines modulate normal germinal center B cell migration. J. Leukoc. Biol. 2016;100:913–918. doi: 10.1189/jlb.1VMR0216-096RR. PubMed DOI
Harrer C., Otto F., Radlberger R.F., Moser T., Pilz G., Wipfler P., Harrer A. The CXCL13/CXCR5 Immune Axis in Health and Disease—Implications for Intrathecal B Cell Activities in Neuroinflammation. Cells. 2022;11:2649. doi: 10.3390/cells11172649. PubMed DOI PMC
Yamamoto Y., Matsui N., Uzawa A., Ozawa Y., Kanai T., Oda F., Kondo H., Ohigashi I., Takizawa H., Kondo K., et al. Intrathymic Plasmablasts Are Affected in Patients With Myasthenia Gravis With Active Disease. Neurol. Neuroimmunol. Neuroinflamm. 2021;8:e1087. doi: 10.1212/NXI.0000000000001087. PubMed DOI PMC
Gu-Trantien C., Migliori E., Buisseret L., de Wind A., Brohée S., Garaud S., Noël G., Dang Chi V.L., Lodewyckx J.-N., Naveaux C., et al. CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI Insight. 2017;2:e91487. doi: 10.1172/jci.insight.91487. PubMed DOI PMC
Shiao Y.-M., Lee C.-C., Hsu Y.-H., Huang S.-F., Lin C.-Y., Li L.-H., Fann C.S.-J., Tsai C.-Y., Tsai S.-F., Chiu H.-C. Ectopic and high CXCL13 chemokine expression in myasthenia gravis with thymic lymphoid hyperplasia. J. Neuroimmunol. 2010;221:101–106. doi: 10.1016/j.jneuroim.2010.02.013. PubMed DOI
Saito R., Onodera H., Tago H., Suzuki Y., Shimizu M., Matsumura Y., Kondo T., Itoyama Y. Altered expression of chemokine receptor CXCR5 on T cells of myasthenia gravis patients. J. Neuroimmunol. 2005;170:172–178. doi: 10.1016/j.jneuroim.2005.09.001. PubMed DOI
Lewis S.M., Williams A., Eisenbarth S.C. Structure-function of the immune system in the spleen. Sci. Immunol. 2019;4:eaau6085. doi: 10.1126/sciimmunol.aau6085. PubMed DOI PMC
Gonzalez S.F., Degn S.E., Pitcher L.A., Woodruff M., Heesters B.A., Carroll M.C. Trafficking of B cell antigen in lymph nodes. Annu. Rev. Immunol. 2011;29:215–233. doi: 10.1146/annurev-immunol-031210-101255. PubMed DOI
Liu Y.-J. Sites of B Lymphocyte Selection, Activation, and Tolerance in Spleen. J. Exp. Med. 1997;186:625–629. doi: 10.1084/jem.186.5.625. PubMed DOI PMC
Loder B.F., Mutschler B., Ray R.J., Paige C.J., Sideras P., Torres R., Lamers M.C., Carsetti R. B Cell Development in the Spleen Takes Place in Discrete Steps and Is Determined by the Quality of B Cell Receptor–Derived Signals. J. Exp. Med. 1999;190:75–90. doi: 10.1084/jem.190.1.75. PubMed DOI PMC
Reuveni D., Aricha R., Souroujon M.C., Fuchs S. MuSK EAMG: Immunological Characterization and Suppression by Induction of Oral Tolerance. Front. Immunol. 2020;11:403. doi: 10.3389/fimmu.2020.00403. PubMed DOI PMC
Ulusoy C., Çavuş F., Yılmaz V., Tüzün E. Immunization with Recombinantly Expressed LRP4 Induces Experimental Autoimmune Myasthenia Gravis in C57BL/6 Mice. Immunol. Investig. 2017;46:490–499. doi: 10.1080/08820139.2017.1299754. PubMed DOI