In Situ Genetic Evaluation of European Larch Across Climatic Regions Using Marker-Based Pedigree Reconstruction

. 2020 ; 11 () : 28. [epub] 20200213

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32117444

Sustainable and efficient forestry in a rapidly changing climate is a daunting task. The sessile nature of trees makes adaptation to climate change challenging; thereby, ecological services and economic potential are under risk. Current long-term and costly gene resources management practices have been primarily directed at a few economically important species and are confined to defined ecological boundaries. Here, we present a novel in situ gene-resource management approach that conserves forest biodiversity and improves productivity and adaptation through utilizing basic forest regeneration installations located across a wide range of environments without reliance on structured tree breeding/conservation methods. We utilized 4,267 25- to 35-year-old European larch trees growing in 21 reforestation installations across four distinct climatic regions in Austria. With the aid of marker-based pedigree reconstruction, we applied multi-trait, multi-site quantitative genetic analyses that enabled the identification of broadly adapted and productive individuals. Height and wood density, proxies to fitness and productivity, yielded in situ heritability estimates of 0.23 ± 0.07 and 0.30 ± 0.07, values similar to those from traditional "structured" pedigrees methods. In addition, individual trees selected with this approach are expected to yield genetic response of 1.1 and 0.7 standard deviations for fitness and productivity attributes, respectively, and be broadly adapted to a range of climatic conditions. Genetic evaluation across broad climatic gradients permitted the delineation of suitable reforestation areas under current and future climates. This simple and resource-efficient management of gene resources is applicable to most tree species.

Zobrazit více v PubMed

Alberto F. J., Aitken S. N., Alía R., González-Martínez S. C., Hänninen H., Kremer A., et al. (2013). Potential for evolutionary responses to climate change–evidence from tree populations. Global Change Biol. 19, 1645–1661. 10.1111/gcb.12181 PubMed DOI PMC

Allen C. D., Macalady A. K., Chenchouni H., Bachelet D., McDowell N., Vennetier M., et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. 10.1016/j.foreco.2009.09.001 DOI

Bräutigam K., Vining K. J., Lafon-Placette C., Fossdal C. G., Mirouze M., Marcos J. G., et al. (2013). Epigenetic regulation of adaptive responses of forest tree species to the environment. Ecol. Evol. 3, 399–415. 10.1002/ece3.461 PubMed DOI PMC

Chaloupková K., Stejskal J., El-Kassaby Y. A., Lstibůrek M. (2016). Optimum neighborhood seed orchard design. Tree Genet. Genomes 12, 105. 10.1007/s11295-016-1067-y DOI

Cown D. (1978). Comparison of the pilodyn and torsiometer methods for the rapid assessment of wood density in living trees. New Zeal J. For. Sci. 8, 384–391.

El-Dien O. G., Ratcliffe B., Klápště J., Porth I., Chen C., El-Kassaby Y. A. (2016). Implementation of the realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling additive from nonadditive genetic effects. G3: Genes Genomes Genet. 6, 743–753. 10.1534/g3.115.025957 PubMed DOI PMC

El-Kassaby Y. A., Lstibůrek M. (2009). Breeding without breeding. Genet. Res. 91, 111–120. 10.1017/S001667230900007X PubMed DOI

Frascaria-Lacoste N., Fernández-Manjarrés J. (2012). Assisted colonization of foundation species: lack of consideration of the extended phenotype concept - Response to Kreyling et al., (2011). Restor. Ecol. 20, 296–298. 10.1111/j.1526-100X.2012.00875.x DOI

George J.-P., Grabner M., Karanitsch-Ackerl S., Mayer K., Weißenbacher L., Schueler S., et al. (2017). Genetic variation, phenotypic stability, and repeatability of drought response in European larch throughout 50 years in a common garden experiment. Tree Physiol. 37, 33–46. 10.1093/treephys/tpw085 PubMed DOI PMC

Gilmour A., Gogel B., Cullis B., Thompson R., Butler D., Cherry M., et al. (2008). ASReml user guide release 3.0. VSN Int. Ltd.

Giorgetta M. A., Jungclaus J., Reick C. H., Legutke S., Bader J., Böttinger M., et al. (2013). Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model Earth Syst. 5, 572–597. 10.1002/jame.20038 DOI

Hanewinkel M., Cullmann D. A., Schelhaas M.-J., Nabuurs G.-J., Zimmermann N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207. 10.1038/nclimate1687 DOI

Henderson C. R. (1984). Applications of linear models in animal breeding Vol. 462 (Guelph: University of Guelph; ).

Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. 10.1002/joc.1276 DOI

Holeski L. M., Jander G., Agrawal A. A. (2012). Transgenerational defense induction and epigenetic inheritance in plants. Trends Ecol. Evol. 27, 618–626. 10.1016/j.tree.2012.07.011 PubMed DOI

Hua F., Wang X., Zheng X., Fisher B., Wang L., Zhu J., et al. (2016). Opportunities for biodiversity gains under the world's largest reforestation programme. Nat. Commun. 7, 12717. 10.1038/ncomms12717 PubMed DOI PMC

Isbell F., Craven D., Connolly J., Loreau M., Schmid B., Beierkuhnlein C., et al. (2015). Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 526, 574–577. 10.1038/nature15374 PubMed DOI

Jansen S., Geburek T. (2016). Historic translocations of European larch (Larix decidua Mill.) genetic resources across Europe–A review from the 17th until the mid-20th century. For. Ecol. Manag. 379, 114–123. 10.1016/j.foreco.2016.08.007 DOI

Kalinowski S. T., Taper M. L., Marshall T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106. 10.1111/j.1365-294X.2007.03089.x PubMed DOI

Koralewski T. E., Wang H.-H., Grant W. E., Byram T. D. (2015). Plants on the move: assisted migration of forest trees in the face of climate change. For. Ecol. Manag. 344, 30–37. 10.1016/j.foreco.2015.02.014 DOI

Korecký J., Lstibůrek M., El-Kassaby Y. A. (2014). Congruence between theory and practice: reduced contamination rate following phenotypic pre-selection within the breeding without breeding framework. Scand. J. For. Res. 29, 552–554. 10.1080/02827581.2014.945616 DOI

Kranabetter J., Stoehr M., O’Neill G. (2012). Divergence in ectomycorrhizal communities with foreign Douglas-fir populations and implications for assisted migration. Ecol. Appl. 22, 550–560. 10.1890/11-1514.1 PubMed DOI

Kremer A., Ronce O., Robledo-Arnuncio J. J., Guillaume F., Bohrer G., Nathan R., et al. (2012). Long-distance gene flow and adaptation of forest trees to rapid climate change. Ecol. Lett. 15, 378–392. 10.1111/j.1461-0248.2012.01746.x PubMed DOI PMC

Lefort F., Douglas G. C. (1999). An efficient micro-method of dna isolation from mature leaves of four hardwood tree species Acer, Fraxinus, Prunus and Quercus. Ann. For. Sci. 56, 259–263. 10.1051/forest:19990308 DOI

Lstibůrek M., Ivanková K., Kadlec J., Kobliha J., Klápště J., El-Kassaby Y. A. (2011). Breeding without breeding: minimum fingerprinting effort with respect to the effective population size. Tree Genet. Genomes 7, 1069–1078. 10.1007/s11295-011-0395-1 DOI

Lstibůrek M., Klápště J., Kobliha J., El-Kassaby Y. A. (2012). Breeding without breeding: effect of gene flow on fingerprinting effort. Tree Genet. Genomes 8, 873–877. 10.1007/s11295-012-0472-0 DOI

Lstibůrek M., Hodge G. R., Lachout P. (2015). Uncovering genetic information from commercial forest plantations—making up for lost time using “breeding without breeding”. Tree Genet. Genomes 11, 55. 10.1007/s11295-015-0881-y DOI

Lstibůrek M., El-Kassaby Y. A., Skrøppa T., Hodge G. R., Sønstebø J. H., Steffenrem A. (2017). Dynamic gene-resource landscape management of norway spruce: combining utilization and conservation. Front. Plant Sci. 8, 1810. 10.3389/fpls.2017.01810 PubMed DOI PMC

Marshall T., Slate J., Kruuk L., Pemberton J. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639–655. 10.1046/j.1365-294x.1998.00374.x PubMed DOI

McLachlan J. S., Hellmann J. J., Schwartz M. W. (2007). A framework for debate of assisted migration in an era of climate change. Conserv. Biol. 21, 297–302. 10.1111/j.1523-1739.2007.00676.x PubMed DOI

Meier E. S., Lischke H., Schmatz D. R., Zimmermann N. E. (2012). Climate, competition and connectivity affect future migration and ranges of European trees. Global Ecol. Biogeogr. 21, 164–178. 10.1111/j.1466-8238.2011.00669.x DOI

Pâques L. E. (ed.). (2013). Forest tree breeding in Europe. Current state-of-the-art and perspectives. (Dordrecht: Springer; ). 10.1007/978-94-007-6146-9 DOI

Pâques L. E. (2004). Roles of European and Japanese larch in the genetic control of growth, architecture and wood quality traits in interspecific hybrids (Larix× eurolepis Henry). Ann. For. Sci. 61, 25–33. 10.1051/forest:2003081 DOI

Pretzsch H., Biber P., Schütze G., Uhl E., Rötzer T. (2014). Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 4967. 10.1038/ncomms5967 PubMed DOI PMC

Ratcliffe B., Hart F. J., Klápště J., Jaquish B., Mansfield S. D., El-Kassaby Y. A. (2014). Genetics of wood quality attributes in western larch. Ann. For. Sci. 71, 415–424. 10.1007/s13595-013-0349-x DOI

Saikkonen K., Taulavuori K., Hyvönen T., Gundel P. E., Hamilton C. E., Vänninen I., et al. (2012). Climate change-driven species' range shifts filtered by photoperiodism. Nat. Clim. Change 2, 239–242. 10.1038/nclimate1430 DOI

Stejskal J., Lstibůrek M., Klápště J., Čepl J., El-Kassaby Y. (2018). Effect of genomic prediction on response to selection in forest tree breeding. Tree Genet. Genomes 14, 74. 10.1007/s11295-018-1283-8 DOI

Vitt P., Havens K., Kramer A. T., Sollenberger D., Yates E. (2010). Assisted migration of plants: changes in latitudes, changes in attitudes. Biol. Conserv. 143, 18–27. 10.1016/j.biocon.2009.08.015 DOI

Wagner S., Gerber S., Petit R. J. (2012). Two highly informative dinucleotide SSR multiplexes for the conifer Larix decidua (European larch). Mol. Ecol. Resour. 12, 717–725. 10.1111/j.1755-0998.2012.03139.x PubMed DOI

Walther G.-R., Post E., Convey P., Menzel A., Parmesan C., Beebee T. J., et al. (2002). Ecological responses to recent climate change. Nature 416, 389–395. 10.1038/416389a PubMed DOI

Walther G.-R. (2010). Community and ecosystem responses to recent climate change. Phil. Tran. R. Soc. B. 365, 2019–2024. 10.1098/rstb.2010.0021 PubMed DOI PMC

White T. L., Adams W. T., Neale D. B. (2007). Forest Genetics (Wallingford, Oxfordshire, UK: CABI Publishing, CAB International; ). 10.1079/9781845932855.0000 DOI

Wolkovich E. M., Cook B. I., Allen J. M., Crimmins T. M., Betancourt J. L., Travers S. E., et al. (2012). Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497. 10.1038/nature11014 PubMed DOI

Zobel B. J., Jett J. B. (2012). Genetics of Wood Production (Springer-Verlag Berlin Heidelberg: Springer Science & Business Media; ).

Zobel B. J., Talbert J. (2003). Applied forest improvement (Caldwell, NJ: The Blackburn Press; ).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Accelerating Adaptation of Forest Trees to Climate Change Using Individual Tree Response Functions

. 2021 ; 12 () : 758221. [epub] 20211123

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...