Accelerating Adaptation of Forest Trees to Climate Change Using Individual Tree Response Functions

. 2021 ; 12 () : 758221. [epub] 20211123

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34887888

In forest tree breeding, assisted migration has been proposed to accelerate the adaptive response to climate change. Response functions are currently fitted across multiple populations and environments, enabling selections of the most appropriate seed sources for a specific reforestation site. So far, the approach has been limited to capturing adaptive variation among populations, neglecting tree-to-tree variation residing within a population. Here, we combined the response function methodology with the in-situ breeding approach, utilizing progeny trials of European larch (Larix decidua) across 21 test sites in Austria ranging from Alpine to lowland regions. We quantified intra-population genetic variance and predicted individual genetic performance along a climatic gradient. This approach can be adopted in most breeding and conservation programs, boosting the speed of adaptation under climate change.

Zobrazit více v PubMed

Aitken S. N., Yeaman S., Holliday J. A., Wang T., Curtis-McLane S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111. 10.1111/j.1752-4571.2007.00013.x PubMed DOI PMC

Boisvenue C., Running S. W. (2006). Impacts of climate change on natural forest productivity–evidence since the middle of the 20th century. Glob. Change Biol. 12, 862–882. 10.1111/j.1365-2486.2006.01134.x DOI

Breiman L. (2001). Random forests. Mach. Learn. 45, 5–32. 10.1023/A:1010933404324 DOI

Butler D. G., Cullis B. R., Gilmour A. R., Gogel B. J., Thompson R. (2017). Asreml-R Reference Manual, version 4. Hemel Hempstead: VSN International Ltd.

Chakraborty D., Wang T., Andre K., Konnert M., Lexer M. J., Matulla C., et al. . (2015). Selecting populations for non-analogous climate conditions using universal response functions: the case of Douglas-fir in central Europe. PLoS ONE 10:e0136357. 10.1371/journal.pone.0136357 PubMed DOI PMC

Dai A. (2011). Drought under global warming: a review. Wiley Interdiscipl. Rev. Clim. Change 2, 45–65. 10.1002/wcc.81 DOI

Davis M. B., Shaw R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679. 10.1126/science.292.5517.673 PubMed DOI

Dyderski M. K., Paź S., Frelich L. E., Jagodziński A. M. (2018). How much does climate change threaten european forest tree species distributions? Glob. Change Biol. 24, 1150–1163. 10.1111/gcb.13925 PubMed DOI

Falconer D., Mackay T. F. C. (1996). Introduction to Quantitative Genetics. Harlow; Essex: Longman Group Ltd.

Fisher R.A. (1930). The Genetical Theory of Natural Selection. Oxford, UK: Clarendon Press.

Foff V., Weiser F., Foffova E., Gömöry D., et al. . (2014). Growth response of european larch (Larix decidua mill.) populations to climatic transfer. Silvae Genet. 63, 67–75. 10.1515/sg-2014-0010 DOI

Funda T., Lstibůrek M., Lachout P., Klápště J., El-Kassaby Y. (2009). Optimization of combined genetic gain and diversity for collection and deployment of seed orchard crops. Tree Genet. Genomes 5, 583–593. 10.1007/s11295-009-0211-3 DOI

Gougherty A. V., Keller S. R., Fitzpatrick M. C. (2021). Maladaptation, migration and extirpation fuel climate change risk in a forest tree species. Nat. Clim. Change 11, 166–171. 10.1038/s41558-020-00968-6 DOI

Henderson C. (1984). Applications of Linear Models in Animal Breeding. Guelph, ON: University of Guelph, Canada.

Hijmans R. J., Cameron S. E., Parra J. L., Jones P. G., Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. 10.1002/joc.1276 PubMed DOI

Howe G. T., Aitken S. N., Neale D. B., Jermstad K. D., Wheeler N. C., Chen T. H. (2003). From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can. J. Bot. 81, 1247–1266. 10.1139/b03-141 DOI

Kapeller S., Lexer M. J., Geburek T., Hiebl J., Schueler S. (2012). Intraspecific variation in climate response of Norway spruce in the eastern Alpine range: selecting appropriate provenances for future climate. For. Ecol. Manage. 271, 46–57. 10.1016/j.foreco.2012.01.039 DOI

Kolmodin R., Strandberg E., Jorjani H., Danell B. (2003). Selection in the presence of a genotype by environment interaction: response in environmental sensitivity. Anim. Sci. 76, 375–385. 10.1017/S1357729800058604 PubMed DOI

Leites L. P., Rehfeldt G. E., Robinson A. P., Crookston N. L., Jaquish B. (2012). Possibilities and limitations of using historic provenance tests to infer forest species growth responses to climate change. Nat. Resour. Model. 25, 409–433. 10.1111/j.1939-7445.2012.00129.x DOI

Liaw A., Wiener M. (2002). Classification and Regression by randomForest. R News 2, 18–22.

Lindgren D., Wei R., Bondesson L. (1993). Optimal selection from families. Heredity 70, 619–621. 10.1038/hdy.1993.88 DOI

Lindner M., Fitzgerald J. B., Zimmermann N. E., Reyer C., Delzon S., van der Maaten E., et al. . (2014). Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J. Environ. Manage. 146, 69–83. 10.1016/j.jenvman.2014.07.030 PubMed DOI

Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., et al. . (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259, 698–709. 10.1016/j.foreco.2009.09.023 DOI

Lstibůrek M., Hodge G. R., Lachout P. (2015). Uncovering genetic information from commercial forest plantations-making up for lost time using “breeding without breeding”. Tree Genet. Genomes 11:55. 10.1007/s11295-015-0881-y DOI

Lstibůrek M., Schueler S., El-Kassaby Y. A., Hodge G. R., Stejskal J., Koreckỳ J., et al. . (2020). In Situ genetic evaluation of European larch across climatic regions using marker-based pedigree reconstruction. Front. Genet. 11:28. 10.3389/fgene.2020.00028 PubMed DOI PMC

Malcolm J. R., Markham A., Neilson R. P., Garaci M. (2002). Estimated migration rates under scenarios of global climate change. J. Biogeogr. 29, 835–849. 10.1046/j.1365-2699.2002.00702.x DOI

Marshall T., Slate J., Kruuk L., Pemberton J. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639–655. 10.1046/j.1365-294x.1998.00374.x PubMed DOI

Mátyás C. (1994). Modeling climate change effects with provenance test data. Tree Physiol. 14, 797–804. PubMed

McLachlan J. S., Clark J. S. (2004). Reconstructing historical ranges with fossil data at continental scales. For. Ecol. Manage. 197, 139–147. 10.1016/j.foreco.2004.05.026 DOI

O'Neill G. A., Nigh G., Wang T., Ott P. K. (2007). Growth response functions improved by accounting for nonclimatic site effects. Can. J. For. Res. 37, 2724–2730. 10.1139/X07-100 DOI

O'Neill G. A., Stoehr M., Jaquish B. (2014). Quantifying safe seed transfer distance and impacts of tree breeding on adaptation. For. Ecol. Manage. 328, 122–130. 10.1016/j.foreco.2014.05.039 DOI

OpenStreetMap contributors (2021). Map Data Retrieved From Leaflet, the Open-Source JavaScript Library, Basemaps: Stamen.TerrainLabels and Stamen.TerrainBackground Basemaps. Available online at: http://leaflet-extras.github.io/leaflet-providers/preview/index.html; https://www.openstreetmap.org.

Pachauri R. K., Allen M. R., Barros V. R., Broome J., Cramer W., Christ R., et al. . (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC.

R Core Team (2020). R: A Language and Environment for Statistical Computing, version 4.0.0. Vienna: R Foundation for Statistical Computing.

Rehfeldt G. E., Ying C. C., Spittlehouse D. L., Hamilton D. A., Jr (1999). Genetic responses to climate in Pinus contorta: niche breadth, climate change, and reforestation. Ecol. Monogr. 69, 375–407.

Richter S., Kipfer T., Wohlgemuth T., Guerrero C. C., Ghazoul J., Moser B. (2012). Phenotypic plasticity facilitates resistance to climate change in a highly variable environment. Oecologia 169, 269–279. 10.1007/s00442-011-2191-x PubMed DOI

RStudio Team (2020). RStudio: Integrated Development Environment for R, version 1.2.5042. Boston, MA: RStudio, PBC.

Sáenz-Romero C., Lamy J.-B., Ducousso A., Musch B., Ehrenmann F., Delzon S., et al. . (2017). Adaptive and plastic responses of Quercus petraea populations to climate across Europe. Glob. Change Biol. 23, 2831–2847. 10.1111/gcb.13576 PubMed DOI PMC

Sáenz-Romero C., O'Neill G., Aitken S. N., Lindig-Cisneros R. (2021). Assisted migration field tests in canada and mexico: lessons, limitations, and challenges. Forests 12:9. 10.3390/f12010009 DOI

Savolainen O., Pyhäjärvi T., Knürr T. (2007). Gene flow and local adaptation in trees. Annu. Rev. Ecol. Evol. Syst. 38, 595–619. 10.1146/annurev.ecolsys.38.091206.095646 PubMed DOI

Schmidtling R. (1994). Use of provenance tests to predict response to climate change: loblolly pine and Norway spruce. Tree Physiol. 14, 805–817. PubMed

Seidl R., Thom D., Kautz M., Martin-Benito D., Peltoniemi M., Vacchiano G., et al. . (2017). Forest disturbances under climate change. Nat. Clim. Change 7, 395–402. 10.1038/nclimate3303 PubMed DOI PMC

Senf C., Seidl R. (2021). Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70. 10.1038/s41893-020-00609-y DOI

St-Laurent G. P., Kozak R., Hagerman S. (2021). Cross-jurisdictional insights from forest practitioners on novel climate-adaptive options for Canada's forests. Reg. Environ. Change 21, 1–14. 10.1007/s10113-020-01733-3 PubMed DOI

Suvanto S., Nöjd P., Henttonen H. M., Beuker E., Mäkinen H. (2016). Geographical patterns in the radial growth response of Norway spruce provenances to climatic variation. Agric. For. Meteorol. 222, 10–20. 10.1016/j.agrformet.2016.03.003 DOI

Thomson A. M., Parker W. H. (2008). Boreal forest provenance tests used to predict optimal growth and response to climate change. 1. Jack pine. Can. J. For. Res. 38, 157–170. 10.1139/X07-122 DOI

Trenberth K. E., Dai A., Van Der Schrier G., Jones P. D., Barichivich J., Briffa K. R., et al. . (2014). Global warming and changes in drought. Nat. Clim. Change 4, 17–22. 10.1038/nclimate2067 DOI

Wang T., Hamann A., Yanchuk A., O'neill G., Aitken S. (2006). Use of response functions in selecting lodgepole pine populations for future climates. Glob. Change Biol. 12, 2404–2416. 10.1111/j.1365-2486.2006.01271.x DOI

Wang T., O'Neill G. A., Aitken S. N. (2010). Integrating environmental and genetic effects to predict responses of tree populations to climate. Ecol. Appl. 20, 153–163. 10.1890/08-2257.1 PubMed DOI

White TL, Adams WT, Neale DB. (2007). Forest Genetics. Wallingford, UK: CAB International.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...