Full-length direct RNA sequencing uncovers stress-granule dependent RNA decay upon cellular stress

. 2024 Aug 27 ; () : . [epub] 20240827

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články, preprinty

Perzistentní odkaz   https://www.medvik.cz/link/pmid37693505

Grantová podpora
ZIA AG000696 Intramural NIH HHS - United States

Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adaptor ligation, to comprehensively interrogate the human transcriptome at single-molecule and nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key determinant of RNA metabolism upon cellular stress and dependent on stress-granule formation.

Aktualizováno

PubMed

Zobrazit více v PubMed

Anderson P, Kedersha N. 2008. Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150. PubMed

Beckman KB, Ames BN. 1998. The free radical theory of aging matures. Physiol Rev 78:547–581. PubMed

Bley N, Lederer M, Pfalz B, Reinke C, Fuchs T, Glaß M, Möller B, Hüttelmaier S. 2015. Stress granules are dispensable for mRNA stabilization during cellular stress. Nucleic Acids Res 43:e26. PubMed PMC

Borbolis F, Syntichaki P. 2022. Biological implications of decapping: beyond bulk mRNA decay. FEBS J 289:1457–1475. PubMed

Bresson S, Shchepachev V, Spanos C, Turowski TW, Rappsilber J, Tollervey D. 2020. Stress-Induced Translation Inhibition through Rapid Displacement of Scanning Initiation Factors. Molecular Cell 0. doi:10.1016/j.molcel.2020.09.021 PubMed DOI PMC

Brothers WR, Ali F, Kajjo S, Fabian MR. 2023. The EDC4-XRN1 interaction controls P-body dynamics to link mRNA decapping with decay. EMBO J e113933. PubMed PMC

Chang C-T, Muthukumar S, Weber R, Levdansky Y, Chen Y, Bhandari D, Igreja C, Wohlbold L, Valkov E, Izaurralde E. 2019. A low-complexity region in human XRN1 directly recruits deadenylation and decapping factors in 5’−3’ messenger RNA decay. Nucleic Acids Res 47:9282–9295. PubMed PMC

Derisbourg MJ, Hartman MD, Denzel MS. 2021. Perspective: Modulating the integrated stress response to slow aging and ameliorate age-related pathology. Nat Aging 1:760–768. PubMed PMC

Doma MK, Parker R. 2006. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature 440:561–564. PubMed PMC

Ferrucci L, Wilson DM 3rd, Donegà S, Gorospe M. 2022. The energy-splicing resilience axis hypothesis of aging. Nat Aging 2:182–185. PubMed PMC

Galluzzi L, Yamazaki T, Kroemer G. 2018. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol 19:731–745. PubMed

Gowrishankar G, Winzen R, Dittrich-Breiholz O, Redich N, Kracht M, Holtmann H. 2006. Inhibition of mRNA deadenylation and degradation by different types of cell stress. Biol Chem 387:323–327. PubMed

Haigis MC, Yankner BA. 2010. The aging stress response. Mol Cell 40:333–344. PubMed PMC

Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. 2003. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633. PubMed

Hilgers V, Teixeira D, Parker R. 2006. Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae. RNA 12:1835–1845. PubMed PMC

Hinnebusch AG. 1994. Translational control of GCN4: an in vivo barometer of initiation-factor activity. Trends Biochem Sci 19:409–414. PubMed

Horvathova I, Voigt F, Kotrys AV, Zhan Y, Artus-Revel CG, Eglinger J, Stadler MB, Giorgetti L, Chao JA. 2017. The Dynamics of mRNA Turnover Revealed by Single-Molecule Imaging in Single Cells. Mol Cell 68:615–625.e9. PubMed

Ibrahim F, Maragkakis M, Alexiou P, Mourelatos Z. 2018. Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome-phased mRNA endonucleolysis. Nat Struct Mol Biol 25:302–310. PubMed PMC

Ibrahim F, Oppelt J, Maragkakis M, Mourelatos Z. 2021. TERA-Seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Res 49:e115. PubMed PMC

Jayabalan AK, Adivarahan S, Koppula A, Abraham R, Batish M, Zenklusen D, Griffin DE, Leung AKL. 2021. Stress granule formation, disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity. Proc Natl Acad Sci U S A 118:e2021719118. PubMed PMC

Kedersha N, Anderson P. 2007. Mammalian stress granules and processing bodies. Methods Enzymol 431:61–81. PubMed

Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P, Anderson P. 2016. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J Cell Biol 212:845–860. PubMed PMC

Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P. 2005. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884. PubMed PMC

Kharel P, Fay M, Manasova EV, Anderson PJ, Kurkin AV, Guo JU, Ivanov P. 2023. Stress promotes RNA G-quadruplex folding in human cells. Nat Commun 14:205. PubMed PMC

Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R. 2017. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Mol Cell 68:808–820.e5. PubMed PMC

Łabno A, Tomecki R, Dziembowski A. 2016. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. Biochim Biophys Acta 1863:3125–3147. PubMed

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. PubMed PMC

Loh B, Jonas S, Izaurralde E. 2013. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes Dev 27:2125–2138. PubMed PMC

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. PubMed PMC

Maier KC, Gressel S, Cramer P, Schwalb B. 2020. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms. Genome Res 30:1332–1344. PubMed PMC

Maragkakis M, Malla S, Hatzoglou M, Trifunovic A, Glick AB, Finkel T, Longo VD, Kaushik S, Muñoz-Cánoves P, Lithgow GJ, Naidoo N, Booth LN, Payea MJ, Herman AB, de Cabo R, Wilson DM, Ferrucci L, Gorospe M. 2023. Biology of Stress Responses in Aging. Aging Biol 1. doi:10.59368/agingbio.20230001 PubMed DOI PMC

Marcelo A, Koppenol R, de Almeida LP, Matos CA, Nóbrega C. 2021. Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation? Cell Death Dis 12:592. PubMed PMC

Matheny T, Rao BS, Parker R. 2019. Transcriptome-Wide Comparison of Stress Granules and P-Bodies Reveals that Translation Plays a Major Role in RNA Partitioning. Mol Cell Biol 39. doi:10.1128/MCB.00313-19 PubMed DOI PMC

Moon SL, Morisaki T, Khong A, Lyon K, Parker R, Stasevich TJ. 2019. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat Cell Biol 21:162–168. PubMed PMC

Mugridge JS, Coller J, Gross JD. 2018. Structural and molecular mechanisms for the control of eukaryotic 5’−3’ mRNA decay. Nat Struct Mol Biol 25:1077–1085. PubMed

Navickas A, Chamois S, Saint-Fort R, Henri J, Torchet C, Benard L. 2020. No-Go Decay mRNA cleavage in the ribosome exit tunnel produces 5’-OH ends phosphorylated by Trl1. Nat Commun 11:122. PubMed PMC

Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. 2016. The integrated stress response. EMBO Rep 17:1374–1395. PubMed PMC

Panas MD, Ivanov P, Anderson P. 2016. Mechanistic insights into mammalian stress granule dynamics. J Cell Biol 215:313–323. PubMed PMC

Panda AC, Martindale JL, Gorospe M. 2017. Polysome Fractionation to Analyze mRNA Distribution Profiles. Bio Protoc 7. doi:10.21769/BioProtoc.2126 PubMed DOI PMC

Park J-E, Yi H, Kim Y, Chang H, Kim VN. 2016. Regulation of poly(A) tail and translation during the somatic cell cycle. Mol Cell 62:462–471. PubMed

Passmore LA, Coller J. 2021. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol. doi:10.1038/s41580-021-00417-y PubMed DOI PMC

Payea MJ, Dar SA, Malla S, Maragkakis M. 2023. Ribonucleic Acid-Mediated Control of Protein Translation Under Stress. Antioxid Redox Signal 39:374–389. PubMed PMC

Pelechano V, Wei W, Steinmetz LM. 2015. Widespread Co-translational RNA Decay Reveals Ribosome Dynamics. Cell 161:1400–1412. PubMed PMC

Protter DSW, Parker R. 2016. Principles and Properties of Stress Granules. Trends Cell Biol 26:668–679. PubMed PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–6. PubMed PMC

Rabouw HH, Langereis MA, Anand AA, Visser LJ, de Groot RJ, Walter P, van Kuppeveld FJM. 2019. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci U S A 116:2097–2102. PubMed PMC

Ripin N, Parker R. 2022. Are stress granules the RNA analogs of misfolded protein aggregates? RNA 28:67–75. PubMed PMC

Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KK-H, Wilson C, Okreglak V, Ashkenazi A, Hann B, Nader K, Arkin MR, Renslo AR, Sonenberg N, Walter P. 2013. Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife 2:e00498. PubMed PMC

Sidrauski C, McGeachy AM, Ingolia NT, Walter P. 2015. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. Elife 4. doi:10.7554/eLife.05033 PubMed DOI PMC

Stadtman ER, Berlett BS. 1997. Reactive oxygen-mediated protein oxidation in aging and disease. Chem Res Toxicol 10:485–494. PubMed

Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, Fujii M. 2013. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol 33:815–829. PubMed PMC

Watkins CP, Zhang W, Wylder AC, Katanski CD, Pan T. 2022. A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nat Commun 13:2491. PubMed PMC

Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Razaghi R, Zuzarte PC, Gilpatrick T, Payne A, Quick J, Sadowski N, Holmes N, de Jesus JG, Jones KL, Soulette CM, Snutch TP, Loman N, Paten B, Loose M, Simpson JT, Olsen HE, Brooks AN, Akeson M, Timp W. 2019. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat Methods 16:1297–1305. PubMed PMC

Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS. 2019. Oxidation and alkylation stresses activate ribosome-quality control. Nat Commun 10:5611. PubMed PMC

Yu G, Wang L-G, Han Y, He Q-Y. 2012. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16:284–287. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...