Functional characterization of PaLAX1, a putative auxin permease, in heterologous plant systems
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BBS/B/1356X
Biotechnology and Biological Sciences Research Council - United Kingdom
G18881
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/E01772X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/E022758/1
Biotechnology and Biological Sciences Research Council - United Kingdom
G17764
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
18184737
PubMed Central
PMC2259084
DOI
10.1104/pp.107.109371
PII: pp.107.109371
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis enzymologie genetika MeSH
- exprese genu MeSH
- fenotyp MeSH
- fylogeneze MeSH
- geneticky modifikované rostliny enzymologie MeSH
- gravitropismus fyziologie MeSH
- komplementární DNA MeSH
- kvetoucí vrcholky rostlin metabolismus MeSH
- kyselina 2,4-dichlorfenoxyoctová MeSH
- kyseliny indoloctové metabolismus MeSH
- listy rostlin metabolismus MeSH
- membránové transportní proteiny genetika metabolismus MeSH
- molekulární sekvence - údaje MeSH
- sekvence aminokyselin MeSH
- slivoň enzymologie genetika MeSH
- tabák enzymologie genetika MeSH
- testy genetické komplementace MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- komplementární DNA MeSH
- kyselina 2,4-dichlorfenoxyoctová MeSH
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants.
Zobrazit více v PubMed
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215 403–410 PubMed
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Current Protocols in Molecular Biology. John Wiley and Sons, New York
Baulcombe DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD (1986) Expression of biologically-active viral satellite RNA from the nuclear genome of transformed plants. Nature 321 446–449
Benjamins R, Malenica N, Luschnig C (2005) Regulating the regulator: the control of auxin transport. Bioessays 27 1246–1255 PubMed
Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115 591–602 PubMed
Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schultz B, Feldmann KA (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273 948–950 PubMed
Bevan MW (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12 8711–8721 PubMed PMC
Blakeslee J, Peer WA, Murphy AS (2005) Auxin transport. Curr Opin Plant Biol 8 494–500 PubMed
Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD
Casimiro I, Marchant A, Bhalerao RP, Beeckman T, Dhooge S, Swarup R, Graham N, Inze D, Sandberg G, Casero PJ, et al (2001) Auxin transport promotes Arabidopsis lateral root initiation. Plant Cell 13 843–852 PubMed PMC
Chen L, Ortiz-Lopez A, Jung A, Bush DR (2001) ANT1, an aromatic and neutral amino acid transporter in Arabidopsis. Plant Physiol 125 1813–1820 PubMed PMC
Clark MS (1997) Plant Molecular Biology. A Laboratory Manual. Springer-Verlag, Berlin
Clough SJ, Bent AF (1998) Floral dip: simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16 735–743 PubMed
de Billy F, Grosjean C, May S, Bennett M, Cullimore JV (2001) Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol Plant Microbe Interact 14 267–277 PubMed
Delbarre A, Muller P, Imhoff V, Guern J (1996) Comparison of mechanisms controlling uptake and accumulation of 2,4-dichlorophenoxy acetic acid, naphthalene-1-acetic acid, and indole-3-acetic acid in suspension-cultured tobacco cells. Planta 198 532–541 PubMed
Dharmasiri S, Swarup R, Mockaitis K, Dharmasiri N, Singh SK, Kowalchyk M, Marchant A, Mills S, Sandberg G, Bennett MJ, et al (2006) AXR4 is required for localization of the auxin influx facilitator AUX1. Science 312 1218–1220 PubMed
Dobrev P, Havlíček M, Vágner J, Malbeck J, Kamínek M (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A 1075 159–166 PubMed
Dobrev P, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950 21–29 PubMed
Durkovic J (2006) Rapid micropropagation of mature wild cherry. Biol Plant 50 733–736
Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32 1792–1797 PubMed PMC
Felsenstein J (1989) PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics 5 164–166
Fischer U, Ikeda Y, Ljung K, Serralbo O, Singh M, Heidstra R, Palme K, Scheres B, Grebe M (2006) Vectorial information for Arabidopsis planar polarity is mediated by combined AUX1, EIN2, and GNOM activity. Curr Biol 16 2143–2149 PubMed
Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580 1094–1102 PubMed
Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95 7197–7202 PubMed PMC
Grebe M, Friml J, Swarup R, Ljung K, Sandberg G, Terlou M, Palme K, Bennett MJ, Scheres B (2002) Cell polarity signaling in Arabidopsis involves a BFA-sensitive auxin influx pathway. Curr Biol 12 329–334 PubMed
Heisler MG, Jönsson H (2006) Modeling auxin transport and plant development. J Plant Growth Regul 25 302–312
Hochholdinger F, Wulff D, Reuter K, Park WJ, Feix G (2000) Tissue-specific expression of AUX1 in maize roots. J Plant Physiol 157 315–319
Hoshino T, Hitotsubashi R, Miyamoto K, Tanimoto E, Ueda J (2005) Isolation of PsPIN2 and PsAUX1 from etiolated pea epicotyls and their expression on a three-dimensional clinostat. Adv Space Res 36 1284–1291
Imhoff V, Muller P, Guern J, Delbarre A (2000) Inhibitors of the carrier-mediated influx of auxin in suspension-cultured tobacco cells. Planta 210 580–588 PubMed
Jones SE, Demeo JS, Davies NW, Noonan SE, Ross JJ (2005) Stems of the Arabidopsis pin1-1 mutant are not deficient in free indole-3-acetic acid. Planta 222 530–534 PubMed
Kamada M, Yamasaki S, Fujii N, Higashitani A, Takahashi H (2003) Gravity-induced modification of auxin transport and distribution for peg formation in cucumber seedlings: possible roles for CS-AUX1 and CS-PIN1. Planta 218 15–26 PubMed
Kerr ID, Bennett MJ (2007) New insight into the biochemical mechanisms regulating auxin transport in plants. Biochem J 401 613–622 PubMed PMC
Kleine-Vehn J, Dhonukshe P, Swarup R, Bennett M, Friml J (2006) Subcellular trafficking of the Arabidopsis auxin influx carrier AUX1 uses a novel pathway distinct from PIN1. Plant Cell 18 3171–3181 PubMed PMC
Kramer EM, Bennett MJ (2006) Auxin transport: a field in flux. Trends Plant Sci 11 382–386 PubMed
Kramer ER (2004) PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci 9 579–582 PubMed
Krizkova L, Hrouda M (1998) Direct repeats of T-DNA integrated in tobacco chromosomes: characterization of junction regions. Plant J 16 673–680 PubMed
Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28 465–474 PubMed
Maher EP, Martindale SJ (1980) Mutants of Arabidopsis thaliana with altered responses to auxins and gravity. Biochem Genet 18 1041–1053 PubMed
Marchant A, Bhalerao R, Casimiro I, Eklöf J, Casero PJ, Bennett MJ, Sandberg G (2002) AUX1 promotes lateral root formation by facilitating indole-3-acetic acid distribution between sink and source tissues in the Arabidopsis seedling. Plant Cell 14 589–597 PubMed PMC
Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18 2066–2074 PubMed PMC
Morris DA, Robinson JS (1998) Targeting of auxin carriers to the plasma membrane: differential effects of brefeldin A on the traffic of auxin uptake and efflux carriers. Planta 205 606–612
Morris DA, Friml J, Zažímalová E (2004) The functioning of hormones in plant growth and development. In PJ Davies, ed, Plant Hormones: Biosynthesis, Signal Transduction, Action! Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 437–470
Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci USA 101 8039–8044 PubMed PMC
Paponov IA, Teale WD, Trebar M, Blilou K, Palme K (2005) The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci 10 170–177 PubMed
Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001. a) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25 399–406 PubMed
Parry G, Marchant A, May S, Swarup R, Swarup K, James N, Graham N, Allen T, Martucci T, Yemm A, et al (2001. b) Quick on the uptake: characterization of a family of plant auxin influx carriers. J Plant Growth Regul 20 217–225
Péret B, Swarup R, Jansen L, Devos G, Auguy F, Collin M, Santi C, Hocher V, Franche C, Bogusz D, et al (2007) Auxin influx activity is associated with Frankia infection during actinorhizal nodule formation in Casuarina glauca. Plant Physiol 144 1852–1862 PubMed PMC
Reinhardt D, Pescue ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426 255–260 PubMed
Romano CP, Robson PR, Smith H, Estelle M, Klee H (1995) Transgene-mediated auxin overproduction in Arabidopsis—hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resistant mutants. Plant Mol Biol 27 1071–1083 PubMed
Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Duchtig P, Mancuso S, Martinoia E, Geisler M (2005) MDR-like ABC transporter AtPGP4 is involved in auxin-mediated lateral root and root hair development. FEBS Lett 579 5399–5406 PubMed
Schmülling T, Schell J, Spena A (1989) Promoters of the rolA, B, and C genes of Agrobacterium rhizogenes are differentially regulated in transgenic plants. Plant Cell 1 665–670 PubMed PMC
Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP, Sandberg G (2003) Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100 10096–10101 PubMed PMC
Stieger PA, Reinhardt D, Kuhlemeier C (2002) The auxin influx carrier is essential for correct leaf positioning. Plant J 32 509–517 PubMed
Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15 2648–2653 PubMed PMC
Swarup R, Kargul J, Marchant A, Zadik D, Rahman A, Mills R, Yemm A, May S, Williams L, Millner P, et al (2004) Structure-function analysis of the presumptive Arabidopsis auxin permease AUX1. Plant Cell 16 3069–3083 PubMed PMC
Swarup R, Kramer EM, Perry P, Knox K, Leyser HMO, Haseloff J, Beemster GTS, Bhalerao R, Bennett MJ (2005) Root gravitropism requires lateral root cap and epidermal cells for transport and response to a mobile auxin signal. Nat Cell Biol 7 1057–1065 PubMed
Tam YY, Epstein E, Normanly J (2000) Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-9-acetyl-aspartate indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol 123 589–595 PubMed PMC
Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63 2738–2754 PubMed PMC
Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, et al (2005) PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17 2922–2939 PubMed PMC
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22 4673–4680 PubMed PMC
van der Graaff E, Boot K, Granbom R, Sandberg G, Hooykaas PJJ (2003) Increased endogenous auxin production in Arabidopsis thaliana causes both earlier described and novel auxin-related phenotypes. J Plant Growth Regul 22 240–252
Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A (2004) Potassium carrier THR1 is required for auxin transport in Arabidopsis roots. Plant J 40 523–535 PubMed
Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin dependent cross-regulation of PIN expression. Development 132 4521–4531 PubMed
Yamamoto M, Yamamoto KT (1998) Differential effects of 1-naphthalene acetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin resistant mutant of Arabidopsis, Aux1. Plant Cell Physiol 39 660–664 PubMed
Yang YD, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16 1123–1127 PubMed
Young GB, Jack DL, Smith DW, Saier MH (1999) The amino acid/auxin: proton symport permease family. Biochim Biophys Acta 1415 306–322 PubMed
Zažímalová E, Křeček P, Skůpa P, Hoyerová K, Petrášek J (2007) Polar transport of the plant hormone auxin—the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci 64 1621–1637 PubMed PMC
Zhao Y, Christensen SK, Frankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291 306–309 PubMed
Zhuang XL, Jiang JF, Li JH, Ma QB, Xu YY, Xue YB, Xu ZH, Chong K (2006) Over-expression of OsAGAP, an ARF-GAP, interferes with auxin influx, vesicle trafficking and root development. Plant J 48 581–591 PubMed
Auxin transporters--why so many?
GENBANK
AJ862887