Full-length direct RNA sequencing uncovers stress granule-dependent RNA decay upon cellular stress
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ZIA AG000696
Intramural NIH HHS - United States
ZIA AG000696
NIA NIH HHS - United States
PubMed
39699162
PubMed Central
PMC11658763
DOI
10.7554/elife.96284
PII: 96284
Knihovny.cz E-zdroje
- Klíčová slova
- RNA decay, cell biology, cell line, genetics, genomics, human, mouse, stress response,
- MeSH
- adaptorové proteiny signální transdukční metabolismus genetika MeSH
- DNA-helikasy metabolismus genetika MeSH
- exoribonukleasy * metabolismus genetika MeSH
- fyziologický stres * genetika MeSH
- lidé MeSH
- proteiny asociované s mikrotubuly MeSH
- proteiny vázající poly-ADP-ribosu * metabolismus genetika MeSH
- proteiny vázající RNA MeSH
- ribozomy metabolismus MeSH
- RNA-helikasy metabolismus genetika MeSH
- RRM proteiny * metabolismus genetika MeSH
- sekvenční analýza RNA * MeSH
- stabilita RNA * genetika MeSH
- stresová tělíska metabolismus genetika MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- DNA-helikasy MeSH
- exoribonukleasy * MeSH
- G3BP1 protein, human MeSH Prohlížeč
- G3BP2 protein, human MeSH Prohlížeč
- proteiny asociované s mikrotubuly MeSH
- proteiny vázající poly-ADP-ribosu * MeSH
- proteiny vázající RNA MeSH
- RNA-helikasy MeSH
- RRM proteiny * MeSH
- XRN1 protein, human MeSH Prohlížeč
Cells react to stress by triggering response pathways, leading to extensive alterations in the transcriptome to restore cellular homeostasis. The role of RNA metabolism in shaping the cellular response to stress is vital, yet the global changes in RNA stability under these conditions remain unclear. In this work, we employ direct RNA sequencing with nanopores, enhanced by 5' end adapter ligation, to comprehensively interrogate the human transcriptome at single-molecule and -nucleotide resolution. By developing a statistical framework to identify robust RNA length variations in nanopore data, we find that cellular stress induces prevalent 5' end RNA decay that is coupled to translation and ribosome occupancy. Unlike typical RNA decay models in normal conditions, we show that stress-induced RNA decay is dependent on XRN1 but does not depend on deadenylation or decapping. We observed that RNAs undergoing decay are predominantly enriched in the stress granule transcriptome while inhibition of stress granule formation via genetic ablation of G3BP1 and G3BP2 rescues RNA length. Our findings reveal RNA decay as a key component of RNA metabolism upon cellular stress that is dependent on stress granule formation.
Central European Institute of Technology Masaryk University Brno Czech Republic
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Anderson P, Kedersha N. Stress granules: the Tao of RNA triage. Trends in Biochemical Sciences. 2008;33:141–150. doi: 10.1016/j.tibs.2007.12.003. PubMed DOI
Beckman KB, Ames BN. The free radical theory of aging matures. Physiological Reviews. 1998;78:547–581. doi: 10.1152/physrev.1998.78.2.547. PubMed DOI
Bley N, Lederer M, Pfalz B, Reinke C, Fuchs T, Glaß M, Möller B, Hüttelmaier S. Stress granules are dispensable for mRNA stabilization during cellular stress. Nucleic Acids Research. 2015;43:e26. doi: 10.1093/nar/gku1275. PubMed DOI PMC
Borbolis F, Syntichaki P. Biological implications of decapping: beyond bulk mRNA decay. The FEBS Journal. 2022;289:1457–1475. doi: 10.1111/febs.15798. PubMed DOI
Bresson S, Shchepachev V, Spanos C, Turowski TW, Rappsilber J, Tollervey D. Stress-induced translation inhibition through rapid displacement of scanning initiation factors. Molecular Cell. 2020;80:470–484. doi: 10.1016/j.molcel.2020.09.021. PubMed DOI PMC
Brothers WR, Ali F, Kajjo S, Fabian MR. The EDC4-XRN1 interaction controls P-body dynamics to link mRNA decapping with decay. The EMBO Journal. 2023;42:e113933. doi: 10.15252/embj.2023113933. PubMed DOI PMC
Chang CT, Muthukumar S, Weber R, Levdansky Y, Chen Y, Bhandari D, Igreja C, Wohlbold L, Valkov E, Izaurralde E. A low-complexity region in human XRN1 directly recruits deadenylation and decapping factors in 5’-3’ messenger RNA decay. Nucleic Acids Research. 2019;47:9282–9295. doi: 10.1093/nar/gkz633. PubMed DOI PMC
Dar SA, Lee CTY, Maragkakis M. Nanoplen. swh:1:rev:722f2812828212b1d15c8726370f859580ce390cSoftware Heritage. 2024 https://archive.softwareheritage.org/swh:1:dir:7cb227bf57604005784d11f818e846d5f28383a4;origin=https://github.com/maragkakislab/nanoplen;visit=swh:1:snp:51294098e0e84157f873f4755b77e9c07f5f6c4b;anchor=swh:1:rev:722f2812828212b1d15c8726370f859580ce390c
Derisbourg MJ, Hartman MD, Denzel MS. Perspective: Modulating the integrated stress response to slow aging and ameliorate age-related pathology. Nature Aging. 2021;1:760–768. doi: 10.1038/s43587-021-00112-9. PubMed DOI PMC
Doma MK, Parker R. Endonucleolytic cleavage of eukaryotic mRNAs with stalls in translation elongation. Nature. 2006;440:561–564. doi: 10.1038/nature04530. PubMed DOI PMC
Ferrucci L, Wilson DM, III, Donegà S, Gorospe M. The energy-splicing resilience axis hypothesis of aging. Nature Aging. 2022;2:182–185. doi: 10.1038/s43587-022-00189-w. PubMed DOI PMC
Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nature Reviews. Molecular Cell Biology. 2018;19:731–745. doi: 10.1038/s41580-018-0068-0. PubMed DOI
Gowrishankar G, Winzen R, Dittrich-Breiholz O, Redich N, Kracht M, Holtmann H. Inhibition of mRNA deadenylation and degradation by different types of cell stress. Biological Chemistry. 2006;387:323–327. doi: 10.1515/BC.2006.043. PubMed DOI
Haigis MC, Yankner BA. The aging stress response. Molecular Cell. 2010;40:333–344. doi: 10.1016/j.molcel.2010.10.002. PubMed DOI PMC
Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Molecular Cell. 2003;11:619–633. doi: 10.1016/s1097-2765(03)00105-9. PubMed DOI
Hilgers V, Teixeira D, Parker R. Translation-independent inhibition of mRNA deadenylation during stress in Saccharomyces cerevisiae. RNA. 2006;12:1835–1845. doi: 10.1261/rna.241006. PubMed DOI PMC
Hinnebusch AG. Translational control of GCN4: an in vivo barometer of initiation-factor activity. Trends in Biochemical Sciences. 1994;19:409–414. doi: 10.1016/0968-0004(94)90089-2. PubMed DOI
Horvathova I, Voigt F, Kotrys AV, Zhan Y, Artus-Revel CG, Eglinger J, Stadler MB, Giorgetti L, Chao JA. The dynamics of mRNA turnover revealed by single-molecule imaging in single cells. Molecular Cell. 2017;68:615–625. doi: 10.1016/j.molcel.2017.09.030. PubMed DOI
Ibrahim F, Maragkakis M, Alexiou P, Mourelatos Z. Ribothrypsis, a novel process of canonical mRNA decay, mediates ribosome-phased mRNA endonucleolysis. Nature Structural & Molecular Biology. 2018;25:302–310. doi: 10.1038/s41594-018-0042-8. PubMed DOI PMC
Ibrahim F, Oppelt J, Maragkakis M, Mourelatos Z. TERA-Seq: true end-to-end sequencing of native RNA molecules for transcriptome characterization. Nucleic Acids Research. 2021;49:e115. doi: 10.1093/nar/gkab713. PubMed DOI PMC
Jayabalan AK, Adivarahan S, Koppula A, Abraham R, Batish M, Zenklusen D, Griffin DE, Leung AKL. Stress granule formation, disassembly, and composition are regulated by alphavirus ADP-ribosylhydrolase activity. PNAS. 2021;118:e2021719118. doi: 10.1073/pnas.2021719118. PubMed DOI PMC
Ji S, Yang Z, Gozali L, Kenney T, Kocabas A, Jinsook Park C, Hynes M. Distinct expression of select and transcriptome-wide isolated 3’UTRs suggests critical roles in development and transition states. PLOS ONE. 2021;16:e0250669. doi: 10.1371/journal.pone.0250669. PubMed DOI PMC
Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. The Journal of Cell Biology. 2005;169:871–884. doi: 10.1083/jcb.200502088. PubMed DOI PMC
Kedersha N, Anderson P. Mammalian stress granules and processing bodies. Methods in Enzymology. 2007;431:61–81. doi: 10.1016/S0076-6879(07)31005-7. PubMed DOI
Kedersha N, Panas MD, Achorn CA, Lyons S, Tisdale S, Hickman T, Thomas M, Lieberman J, McInerney GM, Ivanov P, Anderson P. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. The Journal of Cell Biology. 2016;212:845–860. doi: 10.1083/jcb.201508028. PubMed DOI PMC
Kharel P, Fay M, Manasova EV, Anderson PJ, Kurkin AV, Guo JU, Ivanov P. Stress promotes RNA G-quadruplex folding in human cells. Nature Communications. 2023;14:205. doi: 10.1038/s41467-023-35811-x. PubMed DOI PMC
Khong A, Matheny T, Jain S, Mitchell SF, Wheeler JR, Parker R. The stress granule transcriptome reveals principles of mRNA accumulation in stress granules. Molecular Cell. 2017;68:808–820. doi: 10.1016/j.molcel.2017.10.015. PubMed DOI PMC
Łabno A, Tomecki R, Dziembowski A. Cytoplasmic RNA decay pathways - Enzymes and mechanisms. Biochimica et Biophysica Acta. 2016;1863:3125–3147. doi: 10.1016/j.bbamcr.2016.09.023. PubMed DOI
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Loh B, Jonas S, Izaurralde E. The SMG5-SMG7 heterodimer directly recruits the CCR4-NOT deadenylase complex to mRNAs containing nonsense codons via interaction with POP2. Genes & Development. 2013;27:2125–2138. doi: 10.1101/gad.226951.113. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Maier KC, Gressel S, Cramer P, Schwalb B. Native molecule sequencing by nano-ID reveals synthesis and stability of RNA isoforms. Genome Research. 2020;30:1332–1344. doi: 10.1101/gr.257857.119. PubMed DOI PMC
Maragkakis M, Malla S, Hatzoglou M, Trifunovic A, Glick AB, Finkel T, Longo VD, Kaushik S, Muñoz-Cánoves P, Lithgow GJ, Naidoo N, Booth LN, Payea MJ, Herman AB, de Cabo R, Wilson DM, Ferrucci L, Gorospe M. Biology of stress responses in aging. Aging Biology. 2023;1:20230002. doi: 10.59368/agingbio.20230001. PubMed DOI PMC
Marcelo A, Koppenol R, de Almeida LP, Matos CA, Nóbrega C. Stress granules, RNA-binding proteins and polyglutamine diseases: too much aggregation? Cell Death & Disease. 2021;12:592. doi: 10.1038/s41419-021-03873-8. PubMed DOI PMC
Matheny T, Rao BS, Parker R. Transcriptome-wide comparison of stress granules and P-bodies reveals that translation plays a major role in RNA partitioning. Molecular and Cellular Biology. 2019;39:e00313-19. doi: 10.1128/MCB.00313-19. PubMed DOI PMC
Moon SL, Morisaki T, Khong A, Lyon K, Parker R, Stasevich TJ. Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nature Cell Biology. 2019;21:162–168. doi: 10.1038/s41556-018-0263-4. PubMed DOI PMC
Mugridge JS, Coller J, Gross JD. Structural and molecular mechanisms for the control of eukaryotic 5’-3’ mRNA decay. Nature Structural & Molecular Biology. 2018;25:1077–1085. doi: 10.1038/s41594-018-0164-z. PubMed DOI
Navickas A, Chamois S, Saint-Fort R, Henri J, Torchet C, Benard L. No-Go Decay mRNA cleavage in the ribosome exit tunnel produces 5’-OH ends phosphorylated by Trl1. Nature Communications. 2020;11:122. doi: 10.1038/s41467-019-13991-9. PubMed DOI PMC
Pakos-Zebrucka K, Koryga I, Mnich K, Ljujic M, Samali A, Gorman AM. The integrated stress response. EMBO Reports. 2016;17:1374–1395. doi: 10.15252/embr.201642195. PubMed DOI PMC
Panas MD, Ivanov P, Anderson P. Mechanistic insights into mammalian stress granule dynamics. The Journal of Cell Biology. 2016;215:313–323. doi: 10.1083/jcb.201609081. PubMed DOI PMC
Panda AC, Martindale JL, Gorospe M. Polysome fractionation to analyze mRNA distribution profiles. Bio-Protocol. 2017;7:e2126. doi: 10.21769/BioProtoc.2126. PubMed DOI PMC
Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of poly(A) tail and translation during the somatic cell cycle. Molecular Cell. 2016;62:462–471. doi: 10.1016/j.molcel.2016.04.007. PubMed DOI
Passmore LA, Coller J. Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nature Reviews. Molecular Cell Biology. 2022;23:93–106. doi: 10.1038/s41580-021-00417-y. PubMed DOI PMC
Payea MJ, Dar SA, Malla S, Maragkakis M. Ribonucleic acid-mediated control of protein translation under stress. Antioxidants & Redox Signaling. 2023;39:374–389. doi: 10.1089/ars.2023.0233. PubMed DOI PMC
Pelechano V, Wei W, Steinmetz LM. Widespread co-translational RNA decay reveals ribosome dynamics. Cell. 2015;161:1400–1412. doi: 10.1016/j.cell.2015.05.008. PubMed DOI PMC
Protter DSW, Parker R. Principles and properties of stress granules. Trends in Cell Biology. 2016;26:668–679. doi: 10.1016/j.tcb.2016.05.004. PubMed DOI PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 2013;41:D590–D596. doi: 10.1093/nar/gks1219. PubMed DOI PMC
Rabouw HH, Langereis MA, Anand AA, Visser LJ, de Groot RJ, Walter P, van Kuppeveld FJM. Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. PNAS. 2019;116:2097–2102. doi: 10.1073/pnas.1815767116. PubMed DOI PMC
Ripin N, Parker R. Are stress granules the RNA analogs of misfolded protein aggregates? RNA. 2022;28:67–75. doi: 10.1261/rna.079000.121. PubMed DOI PMC
Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, Gallagher CM, Ang KKH, Wilson C, Okreglak V, Ashkenazi A, Hann B, Nader K, Arkin MR, Renslo AR, Sonenberg N, Walter P. Pharmacological brake-release of mRNA translation enhances cognitive memory. eLife. 2013;2:e00498. doi: 10.7554/eLife.00498. PubMed DOI PMC
Sidrauski C, McGeachy AM, Ingolia NT, Walter P. The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly. eLife. 2015;4:e05033. doi: 10.7554/eLife.05033. PubMed DOI PMC
Stadtman ER, Berlett BS. Reactive oxygen-mediated protein oxidation in aging and disease. Chemical Research in Toxicology. 1997;10:485–494. doi: 10.1021/tx960133r. PubMed DOI
Sudmant PH, Lee H, Dominguez D, Heiman M, Burge CB. Widespread accumulation of ribosome-associated isolated 3’ UTRs in neuronal cell populations of the aging brain. Cell Reports. 2018;25:2447–2456. doi: 10.1016/j.celrep.2018.10.094. PubMed DOI PMC
Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M, Fujii M. Stress granules inhibit apoptosis by reducing reactive oxygen species production. Molecular and Cellular Biology. 2013;33:815–829. doi: 10.1128/MCB.00763-12. PubMed DOI PMC
Watkins CP, Zhang W, Wylder AC, Katanski CD, Pan T. A multiplex platform for small RNA sequencing elucidates multifaceted tRNA stress response and translational regulation. Nature Communications. 2022;13:2491. doi: 10.1038/s41467-022-30261-3. PubMed DOI PMC
Workman RE, Tang AD, Tang PS, Jain M, Tyson JR, Razaghi R, Zuzarte PC, Gilpatrick T, Payne A, Quick J, Sadowski N, Holmes N, de Jesus JG, Jones KL, Soulette CM, Snutch TP, Loman N, Paten B, Loose M, Simpson JT, Olsen HE, Brooks AN, Akeson M, Timp W. Nanopore native RNA sequencing of A human poly(A) transcriptome. Nature Methods. 2019;16:1297–1305. doi: 10.1038/s41592-019-0617-2. PubMed DOI PMC
Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS. Oxidation and alkylation stresses activate ribosome-quality control. Nature Communications. 2019;10:5611. doi: 10.1038/s41467-019-13579-3. PubMed DOI PMC
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
GEO
GSE204785, GSE79664, GSE127890, GSE198441