Profiling of Health-Promoting and Taste-Relevant Compounds in Sixteen Radish (Raphanus sativus L.) Genotypes Grown under Controlled Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910070
Ministry of Agriculture
RO0423
Ministry of Agriculture
CZ.02.1.01/0.0/0.0/16_019/0000827
Ministry of Education, Youth and Sports
PubMed
37569094
PubMed Central
PMC10417565
DOI
10.3390/foods12152823
PII: foods12152823
Knihovny.cz E-zdroje
- Klíčová slova
- amino acids, chemical profiling, glucosinolates, indoor cultivation, liquid chromatography, radish, sugars,
- Publikační typ
- časopisecké články MeSH
It is becoming increasingly challenging to maintain crop yields and quality as the global climate changes. The aim of this study was to determine whether and how the profile of health-promoting and taste-related compounds of radishes changes within a growing season. A total of 16 radish (Raphanus sativus L.) genotypes that are commercially available on the Czech market were assessed by means of chemical analysis. Radishes were cultivated in three independent growing cycles under controlled conditions, and the effects of the genotype and growing cycle, as well as their interactions, on the chemical traits were evaluated. Most of the variability in chemical composition was associated with the growing cycle, which accounted for 51.53% of total variance, followed by the genotype (26% of total variance). The interaction between the growing cycle and genotype explained 22.47% of total variance. The growing cycle had the strongest effect on amino acid profiles. More specifically, the amino acids that are known to contribute to overall taste (glycine, along with glutamic and aspartic acids) showed the highest degree of variation, while the amino acids related to glucosinolate biosynthesis (methionine, isoleucine, tryptophan, and phenylalanine) showed relatively low variability. On the other hand, indole glucosinolates were found to differ the most between genotypes.
Zobrazit více v PubMed
Ministry of Agriculture of the Czech Republic. [(accessed on 2 June 2023)]. Available online: https://eagri.cz/public/web/file/715205/Zelenina_2022_web.pdf.
Czech Society for Oncology. [(accessed on 2 June 2023)]. Available online: https://www.linkos.cz/english-summary/national-cancer-control-programme/cancer-epidemiology-and-cancer-registries-in-the-czech-republic/
International Diabetes Federation Europe. [(accessed on 2 June 2023)]. Available online: https://idf.org/our-network/regions-members/europe/members/129-czech-republic.html.
Soundararajan P., Kim J.S. Anti-Carcinogenic Glucosinolates in Cruciferous Vegetables and Their Antagonistic Effects on Prevention of Cancers. Molecules. 2018;23:2983. doi: 10.3390/molecules23112983. PubMed DOI PMC
Banihani S.A. Radish (Raphanus sativus) and Diabetes. Nutrients. 2017;9:1014. doi: 10.3390/nu9091014. PubMed DOI PMC
Manivannan A., Kim J.-H., Kim D.-S., Lee E.-S., Lee H.-E. Deciphering the Nutraceutical Potential of Raphanus sativus—A Comprehensive Overview. Nutrients. 2019;11:402. doi: 10.3390/nu11020402. PubMed DOI PMC
Bakhsh K., Ahmad B., Gill Z.A., Hassan S. Estimating indicators of higher yield in radish cultivation. Int. J. Agric. Biol. 2006;8:783–787.
Sonderby I.E., Geu-Flores F., Halkier B.A. Biosynthesis of glucosinolates—Gene discovery and beyond. Trends Plant Sci. 2010;15:283–290. doi: 10.1016/j.tplants.2010.02.005. PubMed DOI
Ćavar Zeljković S., Aucique-Perez C.E., Stefelova N., De Diego N. Optimizing growing conditions for hydroponic farming of selected medicinal and aromatic plants. Food Chem. 2022;375:131845. doi: 10.1016/j.foodchem.2021.131845. PubMed DOI
Abdelrahman M., Ariyanti N.A., Sawada Y., Tsuji F., Hirata S., Hang T.T.M., Okamoto M., Yamada Y., Tsugawa H., Hirai M.Y., et al. Metabolome-Based Discrimination Analysis of Shallot Landraces and Bulb Onion Cultivars Associated with Differences in the Amino Acid and Flavonoid Profiles. Molecules. 2020;25:5300. doi: 10.3390/molecules25225300. PubMed DOI PMC
Bell L., Oloyede O.O., Lignou S., Wagstaff C., Methven L. Taste and Flavor Perceptions of Glucosinolates, Isothiocyanates, and Related Compounds. Mol. Nutr. Food Res. 2018;62:e1700990. doi: 10.1002/mnfr.201700990. PubMed DOI
Chae S.-H., Lee O.N., Park H.Y., Ku K.-M. Seasonal Effects of Glucosinolate and Sugar Content Determine the Pungency of Small-Type (Altari) Radishes (Raphanus sativus L.) Plants. 2022;11:312. doi: 10.3390/plants11030312. PubMed DOI PMC
Glauser G., Schweizer F., Turlings T.C., Reymond P. Rapid profiling of intact glucosinolates in Arabidopsis leaves by UHPLC-QTOFMS using a charged surface hybrid column. Phytochem. Anal. 2012;23:520–528. doi: 10.1002/pca.2350. PubMed DOI
Lee J.G., Bonnema G., Zhang N., Kwak J.H., De Vos R.C.H., Beekwilder J. Evaluation of Glucosinolate Variation in a Collection of Turnip (Brassica rapa) Germplasm by the Analysis of Intact and Desulfo Glucosinolates. J. Agric. Food Chem. 2013;61:3984–3993. doi: 10.3390/plants11121563. PubMed DOI
Abdelhakim L.O.A., Mendanha T., Palma C.F.F., Vrobel O., Štefelová N., Ćavar Zeljković S., Tarkowski P., De Diego N., Wollenweber B., Rosenqvist E., et al. Elevated CO2 improves the physiology but not the final yield in spring wheat genotypes subjected to heat and drought stress during anthesis. Front. Plant Sci. 2022;13:824476. doi: 10.3389/fpls.2022.824476. PubMed DOI PMC
O’Donoghue E.M., Somerfield S.D., Shaw M., Bendall M., Hedderly D., Eason J., Sims I. Evaluation of carbohydrates in Pukekohe Longkeeper and Grano cultivars of Allium cepa. J. Agric. Food Chem. 2004;52:5383–5390. doi: 10.1021/jf030832r. PubMed DOI
Yi G., Lim S., Chae W.B., Park J.E., Park H.R., Lee E.J., Huh J.H. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources. J. Agric. Food Chem. 2016;64:61–70. doi: 10.1021/acs.jafc.5b04575. PubMed DOI
Fahey J., Zalcmann A., Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001;56:5–51. doi: 10.1016/S0031-9422(00)00316-2. PubMed DOI
Nugroho A.B.D., Han N., Pervitasari A.N., Kim D.H., Kim J. Differential expression of major genes involved in the biosynthesis of aliphatic glucosinolates in intergeneric Baemoochae (Brassicaceae) and its parents during development. Plant Mol. Biol. 2020;102:171–184. doi: 10.1007/s11103-019-00939-2. PubMed DOI
Ćavar Zeljković S., Štefelová N., Hron K., Doležalová I., Tarkowski P. Preharvest Abiotic Stress Affects the Nutritional Value of Lettuce. Agronomy. 2023;13:398. doi: 10.3390/agronomy13020398. DOI
Bell L., Methven L., Signore A., Oruna-Concha M.J., Wagstaff C. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds. Food Chem. 2017;218:181–191. doi: 10.1016/j.foodchem.2016.09.076. PubMed DOI PMC
Kang J.N., Kim J.S., Lee S.M., Won S.Y., Seo M.S., Kwon S.J. Analysis of phenotypic characteristics and sucrose metabolism in the roots of Raphanus sativus L. Front. Plant Sci. 2021;12:716782. doi: 10.3389/fpls.2021.716782. PubMed DOI PMC
Park C.H., Ki W., Kim N.S., Park S.Y., Kim J.K., Park S.U. Metabolic Profiling of White and Green Radish Cultivars (Raphanus sativus) Horticulturae. 2022;8:310. doi: 10.3390/horticulturae8040310. DOI
Rosa E., Gomes M.H. Relationship between free amino acids and glucosinolates in primary and secondary inflorescences of 11 broccoli (brassica oleracea L. var italic) cultivars grown in early and late seasons. J. Sci. Food Agric. 2001;82:61–64. doi: 10.1002/jsfa.999. DOI
Liu Y., Rossi M., Liang X., Zhang H., Zou L., Ong C.N. An Integrated Metabolomics Study of Glucosinolate Metabolism in Different Brassicaceae Genera. Metabolites. 2020;10:313. doi: 10.3390/metabo10080313. PubMed DOI PMC
Attri P., Ishikawa K., Okumura T., Koga K., Shiratani M., Mildaziene V. Impact of seed color and storage time on the radish seed germination and sprout growth in plasma agriculture. Sci. Rep. 2021;11:2539. doi: 10.1038/s41598-021-81175-x. PubMed DOI PMC