Elevated CO2 Improves the Physiology but Not the Final Yield in Spring Wheat Genotypes Subjected to Heat and Drought Stress During Anthesis

. 2022 ; 13 () : 824476. [epub] 20220307

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35330869

Heat and drought events often occur concurrently as a consequence of climate change and have a severe impact on crop growth and yield. Besides, the accumulative increase in the atmospheric CO2 level is expected to be doubled by the end of this century. It is essential to understand the consequences of climate change combined with the CO2 levels on relevant crops such as wheat. This study evaluated the physiology and metabolite changes and grain yield in heat-sensitive (SF29) and heat-tolerant (LM20) wheat genotypes under individual heat stress or combined with drought applied during anthesis at ambient (aCO2) and elevated CO2 (eCO2) levels. Both genotypes enhanced similarly the WUE under combined stresses at eCO2. However, this increase was due to different stress responses, whereas eCO2 improved the tolerance in heat-sensitive SF29 by enhancing the gas exchange parameters, and the accumulation of compatible solutes included glucose, fructose, β-alanine, and GABA to keep water balance; the heat-tolerant LM20 improved the accumulation of phosphate and sulfate and reduced the lysine metabolism and other metabolites including N-acetylornithine. These changes did not help the plants to improve the final yield under combined stresses at eCO2. Under non-stress conditions, eCO2 improved the yield of both genotypes. However, the response differed among genotypes, most probably as a consequence of the eCO2-induced changes in glucose and fructose at anthesis. Whereas the less-productive genotype LM20 reduced the glucose and fructose and increased the grain dimension as the effect of the eCO2 application, the most productive genotype SF29 increased the two carbohydrate contents and ended with higher weight in the spikes. Altogether, these findings showed that the eCO2 improves the tolerance to combined heat and drought stress but not the yield in spring wheat under stress conditions through different mechanisms. However, under non-stress conditions, it could improve mainly the yield to the less-productive genotypes. Altogether, the results demonstrated that more studies focused on the combination of abiotic stress are needed to understand better the spring wheat responses that help the identification of genotypes more resilient and productive under these conditions for future climate conditions.

Zobrazit více v PubMed

Abdelhakim L. O. A., Palma C. F. F., Zhou R., Wollenweber B., Ottosen C. O., Rosenqvist E. (2021). The effect of individual and combined drought and heat stress under elevated CO2 on physiological responses in spring wheat genotypes. Plant Physiol. Biochem. 162 301–314. 10.1016/j.plaphy.2021.02.015 PubMed DOI

Ahmed S. A. S., Zhang J., Farhan H., Zhang Y., Yu Z., Islam S., et al. (2020). Diurnal changes in water soluble carbohydrate components in leaves and sucrose associated TaSUT1 gene expression during grain development in wheat. Int. J. Mol. Sci. 21 1–21. 10.3390/ijms21218276 PubMed DOI PMC

Akter N., Islam M. R. (2017). Heat stress effects and management in wheat. a review. Agron. Sustain. Dev. 37:37.

Amthor J. S. (2001). Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crop. Res. 73 1–34. 10.1016/s0378-4290(01)00179-4 DOI

Baker N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59 89–113. 10.1146/annurev.arplant.59.032607.092759 PubMed DOI

Baker N. R., Rosenqvist E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55 1607–1621. 10.1093/jxb/erh196 PubMed DOI

Bechtaoui N., Rabiu M. K., Raklami A., Oufdou K., Hafidi M., Jemo M. (2021). Phosphate-dependent regulation of growth and stresses management in plants. Front. Plant Sci. 12:679916. 10.3389/fpls.2021.679916 PubMed DOI PMC

Calanca P. P. (2017). “Effects of abiotic stress in crop production,” in Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability, eds Ahmed M., Stockle C. O. (Cham: Springer; ).

Caverzan A., Casassola A., Brammer S. P. (2016). Antioxidant responses of wheat plants under stress. Genet. Mol. Biol. 39 1–6. 10.1590/1678-4685-GMB-2015-0109 PubMed DOI PMC

Chavan S. G., Duursma R. A., Tausz M., Ghannoum O. (2019). Elevated CO2 alleviates the negative impact of heat stress on wheat physiology but not on grain yield. J. Exp. Bot. 70 6447–6459. 10.1093/jxb/erz386 PubMed DOI PMC

De Diego N., Sampedro M. C., Barrio R. J., Saiz-Fernández I., Moncaleán P., Lacuesta M. (2013). Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought. Tree Physiol. 33 69–80. 10.1093/treephys/tps125 PubMed DOI

Driever S. M., Lawson T., Andralojc P. J., Raines C. A., Parry M. A. J. (2014). Natural variation in photosynthetic capacity, growth, and yield in 64 field-grown wheat genotypes. J. Exp. Bot. 65 4959–4973. 10.1093/jxb/eru253 PubMed DOI PMC

El Habti A., Fleury D., Jewell N., Garnett T., Tricker P. J. (2020). Tolerance of combined drought and heat stress is associated with transpiration maintenance and water soluble carbohydrates in wheat grains. Front. Plant Sci. 11:568693. 10.3389/fpls.2020.568693 PubMed DOI PMC

Fahad S., Bajwa A. A., Nazir U., Anjum S. A., Farooq A., Zohaib A., et al. (2017). Crop production under drought and heat stress: plant responses and management options. Front. Plant Sci. 8:1147. 10.3389/fpls.2017.01147 PubMed DOI PMC

Farooq M., Bramley H., Palta J. A., Siddique K. H. M. (2011). Heat stress in wheat during reproductive and grain-filling phases. CRC Crit. Rev. Plant Sci. 30 491–507. 10.1080/07352689.2011.615687 DOI

Farooq M., Wahid A., Kobayashi N., Fujita D., Basra S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29 185–212. 10.1016/b978-0-323-85193-0.00011-5 DOI

Hlaváčová M., Klem K., Rapantová B., Novotná K., Urban O., Hlavinka P., et al. (2018). Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field Crop. Res. 221 182–195.

Igamberdiev A. U., Eprintsev A. T. (2016). Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front. Plant Sci. 7:1042. 10.3389/fpls.2016.01042 PubMed DOI PMC

IPCC (2007). Climate Change 2007: the Physical Science Basis. Contribution of Working Group i to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

IPCC (2014). “Climate change 2014: synthesis report,” in Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Pachauri R. K., Meyer L. A. (Geneva: IPCC; ).

Jancewicz A. L., Gibbs N. M., Masson P. H. (2016). Cadaverine’s functional role in plant development and environmental response. Front. Plant Sci. 7:870. 10.3389/fpls.2016.00870 PubMed DOI PMC

Kaplan F., Kopka J., Haskell D. W., Zhao W., Schiller K. C., Gatzke N., et al. (2004). Exploring the temperature-stress metabolome. Plant Physiol. 136 4159–4168. 10.1104/pp.104.052142 PubMed DOI PMC

Karalija E., Selović A., Dahija S., Demir A., Samardžić J., Vrobel O., et al. (2021). Use of seed priming to improve Cd accumulation and tolerance in Silene sendtneri, novel Cd hyper-accumulator. Ecotoxicol. Environ. Saf. 210:111882. 10.1016/j.ecoenv.2020.111882 PubMed DOI

Khan N., Ali S., Zandi P., Mehmood A., Ullah S., Ikram M., et al. (2020). Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan J. Bot. 52 355–363.

Li X., Kristiansen K., Rosenqvist E., Liu F. (2019). Elevated CO2 modulates the effects of drought and heat stress on plant water relations and grain yield in wheat. J. Agron. Crop Sci. 205 362–371. 10.1111/jac.12330 DOI

Li Y., Li X., Yu J., Liu F. (2017). Effect of the transgenerational exposure to elevated CO2 on the drought response of winter wheat: stomatal control and water use efficiency. Environ. Exp. Bot. 136 78–84.

Lobo F. A., de Barros M. P., Dalmagro H. J., Dalmolin ÂC., Pereira W. E., de Souza ÉC., et al. (2013). Fitting net photosynthetic light-response curves with microsoft excel - a critical look at the models. Photosynthetica 51 445–456. 10.1007/s11099-013-0045-y DOI

Marček T., Hamow K. Á, Végh B., Janda T., Darko E. (2019). Metabolic response to drought in six winter wheat genotypes. PLoS One 14:e0212411. 10.1371/journal.pone.0212411 PubMed DOI PMC

Marchetti C. F., Ugena L., Humplík J. F., Polák M., Ćavar Zeljković S., Podlešáková K., et al. (2019). A novel image-based screening method to study water-deficit response and recovery of barley populations using canopy dynamics phenotyping and simple metabolite profiling. Front. Plant Sci. 10:1252. 10.3389/fpls.2019.01252 PubMed DOI PMC

Meehl G. A., Stocker T. F., Collins W. D., Friedlingstein P., Gaye A. T., Gregory J. M., et al. (2007). “Global Climate Projections”, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, eds Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., et al. Cambridge: Cambridge University Press.

Mir R. R., Zaman-Allah M., Sreenivasulu N., Trethowan R., Varshney R. K. (2012). Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor. Appl. Genet. 125 625–645. 10.1007/s00122-012-1904-9 PubMed DOI PMC

Mirosavljević M., Mikić S., Župunski V., Kondić Špika A., Trkulja D., Ottosen C. O., et al. (2021). Effects of high temperature during anthesis and grain filling on physiological characteristics of winter wheat cultivars. J. Agron. Crop Sci. 207 823–832. 10.1111/jac.12546 DOI

Mittler R. (2006). Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11 15–19. 10.1016/j.tplants.2005.11.002 PubMed DOI

Murchie E. H., Lawson T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64 3983–3998. 10.1093/jxb/ert208 PubMed DOI

O’Donoghue E. M., Somerfield S. D., Shaw M., Bendall M., Hedderly D., Eason J., et al. (2004). Evaluation of carbohydrates in pukekohe longkeeper and grano cultivars of Allium cepa. J. Agric. Food Chem. 52 5383–5390. 10.1021/jf030832r PubMed DOI

Pan C., Ahammed G. J., Li X., Shi K. (2018). Elevated CO2 improves photosynthesis under high temperature by attenuating the functional limitations to energy fluxes, electron transport and redox homeostasis in tomato leaves. Front. Plant Sci. 9:1739. 10.3389/fpls.2018.01739 PubMed DOI PMC

Parry M. A. J., Reynolds M., Salvucci M. E., Raines C., Andralojc P. J., Zhu X. G., et al. (2011). Raising yield potential of wheat. II. increasing photosynthetic capacity and efficiency. J. Exp. Bot. 62 453–467. 10.1093/jxb/erq304 PubMed DOI

Parthasarathy A., Savka M. A., Hudson A. O. (2019). The synthesis and role of β-alanine in plants. Front. Plant Sci. 10:921. PubMed PMC

Podlešáková K., Ugena L., Spíchal L., Doležal K., De Diego N. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N. Biotechnol. 48 53–65. 10.1016/j.nbt.2018.07.003 PubMed DOI

Porter J. R., Gawith M. (1999). Temperatures and the growth and development of wheat: a review. Eur. J. Agron. 10 23–36. 10.1016/s1161-0301(98)00047-1 DOI

Prasad P. V. V., Staggenborg S. A., Ristic Z. (2015). ““Impacts of drought and/or heat stress on physiological, developmental, growth, and yield processes of crop plants,” in Response of Crops to Limited Water: Understanding and Modeling Water Stress Effects on Plant Growth Processes, eds Ahuja L. R., Reddy V. A. (Madison, WI: Crop Science Society of America; ).

Prasch C. M., Sonnewald U. (2015). Signaling events in plants: stress factors in combination change the picture. Environ. Exp. Bot. 114 4–14. 10.1016/j.envexpbot.2014.06.020 DOI

Qaseem M. F., Qureshi R., Shaheen H. (2019). Effects of pre-anthesis drought, heat and their combination on the growth, yield and physiology of diverse wheat (Triticum aestivum L.) genotypes varying in sensitivity to heat and drought stress. Sci. Rep. 9:6955. 10.1038/s41598-019-43477-z PubMed DOI PMC

Rizza F., Ghashghaie J., Meyer S., Matteu L., Mastrangelo A. M., Badeck F. (2012). Constitutive differences in water use efficiency between two durum wheat cultivars. Field Crop. Res. 125 49–60. 10.1186/1471-2164-14-821 PubMed DOI PMC

Rollins J. A., Habte E., Templer S. E., Colby T., Schmidt J., Von Korff M. (2013). Leaf proteome alterations in the context of physiological and morphological responses to drought and heat stress in barley (Hordeum vulgare L.). J. Exp. Bot. 64 3201–3212. 10.1093/jxb/ert158 PubMed DOI PMC

Ruan Y. L. (2014). Sucrose metabolism: gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 65 33–67. 10.1146/annurev-arplant-050213-040251 PubMed DOI

Saddhe A. A., Manuka R., Penna S. (2021). Plant sugars: homeostasis and transport under abiotic stress in plants. Physiol. Plant. 171 739–755. 10.1111/ppl.13283 PubMed DOI

Salvucci M. E., Crafts-Brandner S. J. (2004). Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol. Plant. 120 179–186. 10.1111/j.0031-9317.2004.0173.x PubMed DOI

Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. (2021). The role of polyphenols in abiotic stress response: the influence of molecular structure. Plants 10 1–24. 10.3390/plants10010118 PubMed DOI PMC

Schmidhuber J., Tubiello F. N. (2007). Global food security under climate change. Proc. Natl. Acad. Sci. 104 19703–19708. PubMed PMC

Sehgal A., Sita K., Siddique K. H. M., Kumar R., Bhogireddy S., Varshney R. K., et al. (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 871:1705. 10.3389/fpls.2018.01705 PubMed DOI PMC

Shanmugam S., Kjaer K. H., Ottosen C.-O., Rosenqvist E., Kumari Sharma D., Wollenweber B. (2013). The alleviating effect of elevated CO2 on heat stress susceptibility of two wheat (Triticum aestivum L.) cultivars. J. Agron. Crop Sci. 199 340–350. 10.1111/jac.12023 DOI

Sharkey T. D., Bernacchi C. J., Farquhar G. D., Singsaas E. L. (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ. 30 1035–1040. 10.1111/j.1365-3040.2007.01710.x PubMed DOI

Sharma D. K., Andersen S. B., Ottosen C. O., Rosenqvist E. (2012). Phenotyping of wheat cultivars for heat tolerance using chlorophyll a fluorescence. Funct. Plant Biol. 39 936–947. 10.1071/FP12100 PubMed DOI

Sharma D. K., Andersen S. B., Ottosen C. O., Rosenqvist E. (2015). Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter. Physiol. Plant. 153 284–298. 10.1111/ppl.12245 PubMed DOI

Shevyakova N. I., Rakitin V. Y., Duong D. B., Sadomov N. G., Kuznetsov V. V. (2001). Heat shock-induced cadaverine accumulation and translocation throughout the plant. Plant Sci. 161 1125–1133. 10.1016/s0168-9452(01)00515-5 DOI

Shokat S., Großkinsky D. K., Liu F. (2021). Impact of elevated CO2 on two contrasting wheat genotypes exposed to intermediate drought stress at anthesis. J. Agron. Crop Sci. 207 20–33. 10.1111/jac.12442 DOI

Soga T., Ross G. A. (1997). Capillary electrophoretic determination of inorganic and organic anions using 2,6-pyridinedicarboxylic acid: effect of electrolyte’s complexing ability. J. Chromatogr. A 767 223–230.

Suzuki N., Rivero R. M., Shulaev V., Blumwald E., Mittler R. (2014). Abiotic and biotic stress combinations. New Phytol. 203 32–43. PubMed

Taibi G., Schiavo M. R., Gueli M. C., Calanni Rindina P., Muratore R., Nicotra C. M. A. (2000). Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J. Chromatogr. B Biomed. Sci. Appl. 745 431–437. 10.1016/s0378-4347(00)00314-5 PubMed DOI

Tausz M., Tausz-Posch S., Norton R. M., Fitzgerald G. J., Nicolas M. E., Seneweera S. (2013). Understanding crop physiology to select breeding targets and improve crop management under increasing atmospheric CO2 concentrations. Environ. Exp. Bot. 88 71–80. 10.1016/j.envexpbot.2011.12.005 DOI

Tausz-Posch S., Dempsey R. W., Seneweera S., Norton R. M., Fitzgerald G., Tausz M. (2015). Does a freely tillering wheat cultivar benefit more from elevated CO2 than a restricted tillering cultivar in a water-limited environment? Eur. J. Agron. 64 21–28.

Ulfat A., Shokat S., Li X., Fang L., Großkinsky D. K., Majid S. A. (2021). Elevated carbon dioxide alleviates the negative impact of drought on wheat by modulating plant metabolism and physiology. Agric. Water Manag. 250: 106804.

Usmani M. M., Nawaz F., Majeed S., Shehzad M. A., Ahmad K. S., Akhtar G. (2020). Sulfate-mediated drought tolerance in maize involves regulation at physiological and biochemical levels. Sci. Rep. 10:1147. 10.1038/s41598-020-58169-2 PubMed DOI PMC

Vicente R., Bolger A. M., Martínez-Carrasco R., Pérez P., Gutiérrez E., Usadel B., et al. (2019). De Novo transcriptome analysis of durum wheat flag leaves provides new insights into the regulatory response to elevated CO2 and high temperature. Front. Plant Sci. 10:1605. 10.3389/fpls.2019.01605 PubMed DOI PMC

Wahid A., Gelani S., Ashraf M., Foolad M. R. (2007). Heat tolerance in plants: an overview. Environ. Exp. Bot. 61 199–223.

Wang J., Yuan B., Xu Y., Huang B. (2018). Differential responses of amino acids and soluble proteins to heat stress associated with genetic variations in heat tolerance for hard fescue. J. Am. Soc. Hortic. Sci. 143 45–55. 10.21273/jashs04246-17 DOI

Will R. E., Wilson S. M., Zou C. B., Hennessey T. C. (2013). Increased vapor pressure deficit due to higher temperature leads to greater transpiration and faster mortality during drought for tree seedlings common to the forest-grassland ecotone. New Phytol. 200 366–374. 10.1111/nph.12321 PubMed DOI

Xu B., Long Y., Feng X., Zhu X., Sai N., Chirkova L., et al. (2021). GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nat. Commun. 12:1952. 10.1038/s41467-021-21694-3 PubMed DOI PMC

Xu Z., Jiang Y., Jia B., Zhou G. (2016). Elevated-CO2 response of stomata and its dependence on environmental factors. Front. Plant Sci. 7:657. 10.3389/fpls.2016.00657 PubMed DOI PMC

Yang W., Yin Y., Jiang W., Peng D., Yang D., Cui Y., et al. (2014). Severe water deficit-induced ethylene production decreases photosynthesis and photochemical efficiency in flag leaves of wheat. Photosynthetica 52 341–350. 10.1007/s11099-014-0037-6 DOI

Zandalinas S. I., Mittler R., Balfagón D., Arbona V., Gómez-Cadenas A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiol. Plant. 162 2–12. 10.1111/ppl.12540 PubMed DOI

Zeljković S. Ć, Šišková J., Komzáková K., De Diego N., Kaffková K., Tarkowski P. (2021). Phenolic compounds and biological activity of selected Mentha species. Plants 10:550. 10.3390/plants10030550 PubMed DOI PMC

Zhang X., Högy P., Wu X., Schmid I., Wang X., Schulze W. X., et al. (2018). Physiological and proteomic evidence for the interactive effects of post-anthesis heat stress and elevated CO2 on wheat. Proteomics 18:e1800262. 10.1002/pmic.201800262 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...