Phenolic Compounds and Biological Activity of Selected Mentha Species
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
RO0418
Ministerstvo Zemědělství
PubMed
33804017
PubMed Central
PMC8000339
DOI
10.3390/plants10030550
PII: plants10030550
Knihovny.cz E-zdroje
- Klíčová slova
- LC–MS/MS, Mentha sp., antioxidant activity, phenolic compounds, tyrosinase inhibition activity,
- Publikační typ
- časopisecké články MeSH
Mentha species are widely used as food, medicine, spices, and flavoring agents. Thus, chemical composition is an important parameter for assessing the quality of mints. In general, the contents of menthol, menthone, eucalyptol, and limonene comprise one of the major parameters for assessing the quality of commercially important mints. Building further on the phytochemical characterization of the quality of Mentha species, this work was focused on the composition of phenolic compounds in methanolic extracts. Thirteen Mentha species were grown under the same environmental conditions, and their methanolic extracts were subjected to the LC-MS/MS (liquid chromatography-tandem mass spectrometry) profiling of phenolics and the testing their biological activities, i.e., antioxidant and tyrosinase inhibition activities, which are important features for the cosmetic industry. The total phenolic content (TPC) ranged from 14.81 ± 1.09 mg GAE (gallic acid equivalents)/g for Mentha cervina to 58.93. ± 8.39 mg GAE/g for Mentha suaveolens. The antioxidant activity of examined Mentha related with the content of the phenolic compounds and ranged from 22.79 ± 1.85 to 106.04 ± 3.26 mg TE (Trolox equivalents)/g for M. cervina and Mentha x villosa, respectively. Additionally, Mentha pulegium (123.89 ± 5.64 mg KAE (kojic acid equivalents)/g) and Mentha x piperita (102.82 ± 15.16 mg KAE/g) showed a strong inhibition of the enzyme tyrosinase, which is related to skin hyperpigmentation. The most abundant compound in all samples was rosmarinic acid, ranging from 1363.38 ± 8323 to 2557.08 ± 64.21 μg/g. In general, the levels of phenolic acids in all examined mint extracts did not significantly differ. On the contrary, the levels of flavonoids varied within the species, especially in the case of hesperidin (from 0.73 ± 0.02 to 109. 39 ± 2.01 μg/g), luteolin (from 1.84 ± 0.11 to 31.03 ± 0.16 μg/g), and kaempferol (from 1.30 ± 0.17 to 33.68 ± 0.81 μg/g). Overall results indicated that all examined mints possess significant amounts of phenolic compounds that are responsible for antioxidant activity and, to some extent, for tyrosinase inhibition activity. Phenolics also proved to be adequate compounds, together with terpenoids, for the characterization of Mentha sp. Additionally, citrus-scented Mentha x villosa could be selected as a good candidate for the food and pharmaceutical industry, especially due its chemical composition and easy cultivation, even in winter continental conditions.
Zobrazit více v PubMed
Riachi L.G., De Maria A.B. Peppermint antioxidants revisited. Food Chem. 2015;176:72–81. doi: 10.1016/j.foodchem.2014.12.028. PubMed DOI
Cheynier V., Comte G., Davies K.M., Lattanzio V., Marten S. Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol. Biochem. 2013;72:1–20. doi: 10.1016/j.plaphy.2013.05.009. PubMed DOI
Rice Evans C., Miler N., Paganga G. Antioxidant properties of phenolic compounds. Trend. Plant Sci. 1997;2:152–159. doi: 10.1016/S1360-1385(97)01018-2. DOI
European Pharmacopoeia. 4th ed. Council of Europe; Strasbourg, France: 2002.
Tucker A.O. Mentha: Economic uses. In: Lawrence B.M., editor. Mint: The Genus Mentha. CRC Press; Boca Raton, FL, USA: 2007. pp. 519–528.
Wiersema J.H., León B. World Economic Plants: A Standard Reference. 2nd ed. CRC Press; London, UK: 2016.
Salehi B., Stojanović-Radić Z., Matejić J., Sharopov F., Antolak H., Kręgiel D., Sen S., Sharifi-Rad M., Acharya K., Sharifi-Rad R., et al. Plants of genus Mentha: From farm to food factory. Plants. 2018;7:70. doi: 10.3390/plants7030070. PubMed DOI PMC
Singh P., Pandey A.K. Prospective of essential oils of the genus Mentha as biopesticides: A review. Front. Plant Sci. 2018;9:1295. doi: 10.3389/fpls.2018.01295. PubMed DOI PMC
Mimica-Dukic N., Bozin B. Mentha L. species (Lamiaceae) as promising sources of bioactive secondary metabolites. Curr. Pharmaceut. Design. 2008;14:3141–3150. doi: 10.2174/138161208786404245. PubMed DOI
Bisset N.G., Wichtl M., editors. Herbal Drugs and Phytopharmaceuticals. CRC Press; Boca Raton, FL, USA: London, UK: New York, NY, USA: Washington, DC, USA: 2001.
Burzanska-Herman Z. Isolation and identification of components of the flavonoid fraction of domestic species of Mentha L, section Verticillatae (M. arvensis L, M. sachalinensis Kudo, M. verticillata L., M. smithiana Graham, M. gentilis L.) Acta Poloniae Pharm. Drug Res. 1978;3:673–680. PubMed
Dorman H.J.D., Koşar M., Kahlos K., Holm Y., Hiltunen R. Antioxidant properties and composition of aqueous extracts from Mentha species, hybrids, varieties, and cultivars. J. Agric. Food Chem. 2003;51:4563–4569. doi: 10.1021/jf034108k. PubMed DOI
Khanuja S.P.S., Shasany A.K., Srivastava A., Kumar S. Assessment of genetic relationships in Mentha species. Euphytica. 2000;111:121–125. doi: 10.1023/A:1003829512956. DOI
Rösch P., Kiefer W., Popp J. Chemotaxonomy of mints of genus Mentha by applying Raman spectroscopy. Biopolymers. 2002;67:358–361. doi: 10.1002/bip.10099. PubMed DOI
Shasany A.K., Darokar M.P., Dhawan S., Gupta A.K., Gupta S., Shukla A.K., Patra N.K., Khanuja S.P.S. Use of RAPD and AFLP markers to identify inter- and intraspecific hybrids of Mentha. J. Hered. 2005;96:542–549. doi: 10.1093/jhered/esi091. PubMed DOI
Šarić-Kundalić B., Fialová S., Dobeš C., Ölzant S., Grančai D., Reznicek G., Saukel J. Multivariate numerical taxonomy of Mentha species, hybrids, varieties and cultivars. Sci. Pharmaceut. 2009;77:851–876. doi: 10.3797/scipharm.0905-10. DOI
Gobert V., Moja S., Colson M., Taberlet P. Hybridization in the section Mentha (Lamiaceae) inferred from AFLP markers. Am. J. Bot. 2002;89:2017–2023. doi: 10.3732/ajb.89.12.2017. PubMed DOI
Tucker A.O., Chambers H.L. Mentha canadensis L. (Lamiaceae): A Relict amphidiploid from the lower tertiary. Taxon. 2002;51:703–718. doi: 10.2307/1555024. DOI
Kokkini S. Chemical races within the Genus Mentha L. In: Linskens H.F., Jackson J.F., editors. Essential Oils and Waxes. Modern Methods of Plant Analysis. Volume 12. Springer; Berlin/Heidelberg, Germany: 1991. pp. 63–78.
Caballero B., editor. Encyclopedia of Food Sciences and Nutrition. 2nd ed. Academic Press; Cambridge, MA, USA: 2003.
Bones K., Mills S. Principles and Practice of Phytotherapy: Modern Herbal Medicine. 2nd ed. Churchill Livingstone; London, UK: 2013.
Lawrence B.M. The composition of commercially important Mints. In: Lawrence B.M., editor. Mint: The Genus Mentha. CRC Press; Boca Raton, Fl, USA: 2007. pp. 519–528.
Shah S., Gupta L. Response of Mentha species to different harvesting intervals. Prog. Hort. 1989;21:148–150.
Zielinski A.A.F., Haminiuk C.W.I., Alberti A., Nogueira A., Demiate I.M., Granato D. A comparative study of the phenolic compounds and the in vitro antioxidant activity of different Brazilian teas using multivariate statistical techniques. Food Res. Int. 2014;60:246–254. doi: 10.1016/j.foodres.2013.09.010. DOI
Stagos D., Portesis N., Spanou C., Mossialos D., Aligiannis N., Chaita E., Panagoulis C., Reri E., Skaltsounis L., Tsatsakis A.M., et al. Correlation of total polyphenolic content with antioxidant and antibacterial activity of 24 extracts from Greek domestic Lamiaceae species. Food Chem. Toxicol. 2012;50:4115–4124. doi: 10.1016/j.fct.2012.08.033. PubMed DOI
Conforti F., Ioele G., Statti G.A., Marrelli M., Ragno G., Menichini F. Antiproliferative activity against human tumor cell lines and toxicity test on Mediterranean dietary plants. Food Chem. Toxicol. 2008;46:3325–3332. doi: 10.1016/j.fct.2008.08.004. PubMed DOI
Pereira O.R., Macias R.I.R., Domingues M.R., Marin J.J.G., Cardoso S.M. Hepatoprotection of Mentha aquatica L., Lavandula dentata L. and Leonurus cardiaca L. Antioxidants. 2019;8:267. doi: 10.3390/antiox8080267. PubMed DOI PMC
Gatea F., Teodor E.D., Matei A.O., Badea G.I., Radu G.L. Capillary electrophoresis method for 20 polyphenols separation in propolis and plant extracts. Food Anal. Methods. 2015;8:1197–1206. doi: 10.1007/s12161-014-0006-5. DOI
Salin O., Tormakangas L., Leinonen M., Saario M., Hagstrom M., Ketola R.A., Saikku P., Vuorela H., Vuorela P.M. Corn Mint (Mentha arvensis) extract diminishes acute Chlamydia pneumoniae infection in vitro and in vivo. J. Agric. Food Chem. 2011;59:12836–12842. doi: 10.1021/jf2032473. PubMed DOI
Miguel M., Barros L., Pereira C., Calhelha R.C., Garcia P.A., Castro M.A., Santos-Buelga C., Ferreira I.C.F.R. Chemical characterization and bioactive properties of two aromatic plants: Calendula officinalis L. (flowers) and Mentha cervina L. (leaves) Food Funct. 2016;7:2223–2232. doi: 10.1039/C6FO00398B. PubMed DOI
Politi M., Rodrigues C.L., Gião M.S., Pintado M.E., Castro P.M.L. Antioxidant principles and volatile constituents from the north-western Iberian mint “erva-peixeira”, Mentha cervina. Nat. Prod. Commun. 2008;3:2065–2068. doi: 10.1177/1934578X0800301223. DOI
Vladimir-Knežević S., Blažeković B., Kindl M., Vladić J., Lower-Nedza A.D., Brantner A.H. Acetylcholinesterase inhibitory, antioxidant and phytochemical properties of selected medicinal plants of the Lamiaceae family. Molecules. 2014;19:767–782. doi: 10.3390/molecules19010767. PubMed DOI PMC
Patonay K., Korózs M., Murányi Z., Kónya E.P. Polyphenols in northern Hungarian Mentha longifolia (L.) L. treated with ultrasonic extraction for potential oenological uses. Turk. J. Agric. For. 2017;41:208–217. doi: 10.3906/tar-1701-61. DOI
Krzyzanowska J., Janda B., Pecio L., Stochmal A., Oleszek A. Determination of polyphenols in Mentha longifolia and M. piperita field-grown and in vitro plant samples using UPLC-TQ-MS. J. AOAC Int. 2011;94:43–50. doi: 10.1093/jaoac/94.1.43. PubMed DOI
Spiridon I., Bodirlau R., Teaca C.-A. Total phenolic content and antioxidant activity of plants used in traditional Romanian herbal medicine. Cent. Eur. J. Biol. 2011;6:388–396. doi: 10.2478/s11535-011-0028-6. DOI
Kulig D., Matysiak M., Baldovská S., Štefániková J., Maruniaková N., Mňahončáková E., Árvay J., Galbavý D., Kolesárová A. Screening of polyphenolic compounds from traditional medicinal herbs. J. Microbiol. Biotech. Food Sci. 2019;9:487–491. doi: 10.15414/jmbfs.2019.9.special.487-491. DOI
Bittner Fialová S., Kurin E., Trajcíková E., Jánošová L., Šušaníková I., Tekelová D., Nagy M., Mucaji P. Mentha rhizomes as an alternative source of natural antioxidants. Molecules. 2020;25:200. doi: 10.3390/molecules25010200. PubMed DOI PMC
Kogiannou D.A.A., Kalogeropoulos N., Kefalas P., Polissiou M.G., Kaliora A.C. Herbal infusions; their phenolic profile, antioxidant and anti-inflammatory effects in HT29 and PC3 cells. Food Chem. Toxicol. 2013;61:152–159. doi: 10.1016/j.fct.2013.05.027. PubMed DOI
Ferreres F., Bernardo J., Andrade P.B., Sousa C., Gil-Izquierdoa A., Valentao P. Pennyroyal and gastrointestinal cells: Multi-target protection of phenolic compounds against t-BHPinduced toxicity. RSC Adv. 2015;5:41576–41584. doi: 10.1039/C5RA02710A. DOI
Mata A.T., Proenca C., Ferreira A.R., Serralheiro M.L.M., Nogueira J.M.F., Araujo M.E.M. Antioxidant and antiacetylcholinesterase activities of five plants used as Portuguese food spices. Food Chem. 2007;103:778–786. doi: 10.1016/j.foodchem.2006.09.017. DOI
Zugic A., Ðordevic S., Arsic I., Markovic G., Zivkovic J., Jovanovic S., Tadic J. Antioxidant activity and phenolic compounds in 10 selected herbs from Vrujci Spa, Serbia. Ind. Crop. Prod. 2014;52:519–527. doi: 10.1016/j.indcrop.2013.11.027. DOI
Kratchanova M., Denev P., Ciz M., Lojek A., Mihailov A. Evaluation of antioxidant activity of medicinal plants containing polyphenol compounds. Comparison of two extraction systems. Acta Biochim. Pol. 2010;57:229–234. doi: 10.18388/abp.2010_2399. PubMed DOI
Petkova N., Ivanova L., Filova G., Ivanov I., Denev P. Antioxidants and carbohydrate content in infusions and microwave extracts from eight medicinal plants. J. Appl. Pharm. Sci. 2017;7:55–61.
Chrpová D., Kouřimsk L., Gordon M.H., Heřmanová V., Roubíčková I., Pánek J. Antioxidant activity of selected phenols and herbs used in diets for medical conditions. Czech J. Food Sci. 2010;28:317–325. doi: 10.17221/129/2010-CJFS. DOI
Dorman D.H.J., Koşar M., Başer K.H.C., Hiltunen R. phenolic profile and antioxidant evaluation of Mentha x piperita L. (peppermint) extracts. Nat. Prod. Commun. 2009;4:535–542. doi: 10.1177/1934578X0900400419. PubMed DOI
Reichling J., Nolkemper S., Stintzing F.C., Schnitzler P. Impact of ethanolic Lamiaceae extracts on herpesvirus infectivity in cell culture. Forsch. Komplementmed. 2008;15:313–320. doi: 10.1159/000164690. PubMed DOI
Fecka I., Turek S. Determination of water-soluble polyphenolic compounds in commercial herbal teas from Lamiaceae: Peppermint, melissa, and sage. J. Agric. Food Chem. 2007;55:10908–10917. doi: 10.1021/jf072284d. PubMed DOI
Sadowska U., Zabinski A., Szumny A., Dziadekc K. An effect of peppermint herb (Mentha piperita L.) pressing onphysico-chemical parameters of the resulting product. Ind. Crop. Prod. 2016;94:909–919. doi: 10.1016/j.indcrop.2016.10.002. DOI
Pereira E., Pimenta A.I., Calhelha R.C., Antonio A.L., Cabo Verde S., Barros L., Santos-Buelga C., Ferreira I.C.F.R. Effects of gamma irradiation on cytotoxicity and phenolic compounds of Thymus vulgaris L. and Mentha x piperita L. LWT-Food Sci. Technol. 2016;71:370–377. doi: 10.1016/j.lwt.2016.04.004. DOI
Pavlić B., Teslić N., Zengin G., Đurović S., Rakić D., Cvetanović A., Gunes A.K., Zeković Z. Antioxidant and enzyme-inhibitory activity of peppermint extracts and essential oils obtained by conventional and emerging extraction techniques. Food Chem. 2021;338:127724. doi: 10.1016/j.foodchem.2020.127724. PubMed DOI
Areias F.M., Valentao P., Andrade P.B., Ferreres F., Seabra R.M. Phenolic fingerprint in pepermin leaves. Food Chem. 2001;73:307–311. doi: 10.1016/S0308-8146(00)00302-2. DOI
Orphanides A., Goulas V., Gekas V. Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J. Food Sci. 2013;31:509–513. doi: 10.17221/526/2012-CJFS. DOI
Marrelli M., Cristaldi B., Menichini F., Conforti F. Inhibitory effects of wild dietary plants on lipid peroxidation and on the proliferation of human cancer cells. Food Chem. Toxicol. 2015;86:16–24. doi: 10.1016/j.fct.2015.09.011. PubMed DOI
Rita I., Pereira C., Barros L., Santos-Buelga C., Ferreira I.C.F.R. Mentha spicata L. infusions as sources of antioxidant phenolic compounds: Emerging reserve lots with special harvest requirements. Food Funct. 2016;7:4188–4192. doi: 10.1039/C6FO00841K. PubMed DOI
Goncalves S., Moreira E., Grosso C., Andrade P.B., Valentao P., Romano A. Phenolic profile, antioxidant activity and enzyme inhibitory activities of extracts from aromatic plants used in Mediterranean diet. J. Food Sci. Technol. 2017;54:219–227. doi: 10.1007/s13197-016-2453-z. PubMed DOI PMC
Sytar O., Hemmerich I., Zivcak M., Rauh C., Brestic M. Comparative analysis of bioactive phenolic compounds composition from 26 medicinal plants. Saudi J. Biol. Sci. 2018;25:631–641. doi: 10.1016/j.sjbs.2016.01.036. PubMed DOI PMC
Fialova S., Veizerova L., Nosalova V., Drabikova K., Tekelova D., Grancai D., Sotnikova R. Water extract of Mentha × villosa: Phenolic fingerprint and effect on ischemia-reperfusion injury. Nat. Prod. Commun. 2015;10:937–940. doi: 10.1177/1934578X1501000636. PubMed DOI
Fletcher R.S., Slimmon T., Kott L.S. Environmental factors affecting the accumulation of rosmarinic acid in spearmint (Mentha spicata L.) and peppermint (Mentha piperita L.) Open Agri. J. 2010;4:10–16. doi: 10.2174/1874331501004010010. DOI
Petersen M. Rosmarinic acid: New aspects. Phytochem. Rev. 2013;12:207–227. doi: 10.1007/s11101-013-9282-8. DOI
Pavela R., Kaffková K., Kumšta M. Chemical composition and larvicidal activity of essential oils from different Mentha L. and Pulegium species against Culex quinquefasciatus Say (Diptera: Culicidae) Plant Protect. Sci. 2014;50:36–42. doi: 10.17221/48/2013-PPS. DOI
Fancello F., Zara S., Petretto G.L., Chessa M., Addis R., Rourke J.P., Pintore G. Essential oils from three species of Mentha harvested in Sardinia: Chemical characterization and evaluation of their biological activity. Int. J. Food Prop. 2017;20:1751–1761. doi: 10.1080/10942912.2017.1354020. DOI
Rodrigues L., Póvo O., van den Berg C., Figueiredo A.C., Moldão M., Monteiro A. Genetic diversity in Mentha cervina based on morphological traits, essential oils profile and ISSRs markers. Biochem. Syst. Ecol. 2013;51:50–59. doi: 10.1016/j.bse.2013.08.014. DOI
Mogosan C., Vostinaru O., Oprean R., Heghes C., Filip L., Balica G., Moldovan R.I. A comparative analysis of the chemical composition, anti-inflammatory, and antinociceptive effects of the essential oils from three species of Mentha cultivated in Romania. Molecules. 2017;22:263. doi: 10.3390/molecules22020263. PubMed DOI PMC
Bokić B.S., Rat M.M., Kladar N.V., Anačkov G.T., Božin B.N. Chemical diversity of volatile compounds of mints from southern part of Pannonian Plain and Balkan Peninsula—new data. Chem. Biodivers. 2020;17:e2000211. doi: 10.1002/cbdv.202000211. PubMed DOI
Tomei P.E., Manganelli R.E.U. Composition of the essential oil of Mentha microphylla from the Gennargentu Mountains (Sardinia, Italy) J. Agric. Food Chem. 2003;51:3614–3617. doi: 10.1021/jf026091w. PubMed DOI
Šamec D., Karalija E., Šola I., Vujčić Bok V., Salopek-Sondi B. The Role of polyphenols in abiotic stress response: The influence of molecular structure. Plants. 2021;10:118. doi: 10.3390/plants10010118. PubMed DOI PMC
Wojtunik K.A., Ciesla L.M., Waksmundzka-Hajnos M. Model studies on the antioxidant activity of common terpenoid constituents of essential oils by means of the 2,2-diphenyl-1- picrylhydrazyl method. J. Agric. Food Chem. 2014;62:9088–9094. doi: 10.1021/jf502857s. PubMed DOI
Bahadori M.B., Zengin G., Bahadori S., Dinparast L., Movahhedin N. Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.) Int. J. Food Prop. 2018;21:198–208.
Fiocco D., Fiorentino D., Frabboni L., Benvenuti S., Orlandini G., Pellati F., Gallone A. Lavender and peppermint essential oils as effective mushroom tyrosinase inhibitors: A basic study. Flavour Fragr. J. 2011;26:441–446. doi: 10.1002/ffj.2072. DOI
Ćavar Zeljković S., Komzáková K., Šišková J., Karalija E., Smékalová K., Tarkowski P. Phytochemical variability of selected basil genotypes. Ind. Crop. Prod. 2020;157:112910. doi: 10.1016/j.indcrop.2020.112910. DOI
Singleton V.L., Rosi J.A. Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965;16:144–158.
Nagy M., Grancai D. Colorimetric determination of flavanones in propolis. Pharmazie. 1996;51:100–101.
Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. 4th ed. Allured Publishing Corporation; Carol Stream, IL, USA: 2007.
Brand-Williams W., Cuvelier M.E., Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995;28:25–30. doi: 10.1016/S0023-6438(95)80008-5. DOI
Saghaie L., Pourfarzam M., Fassihi A., Sartippour B. Synthesis and tyrosinase inhibitory properties of some novel derivates of kojic acid. PMC Res. Pharm. Sci. 2013;8:233–242. PubMed PMC
Triazoles as a Potential Threat to the Nutritional Quality of Tomato Fruits
Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy
Antiviral Activity of Selected Lamiaceae Essential Oils and Their Monoterpenes Against SARS-Cov-2
Exploring New Sources of Bioactive Phenolic Compounds from Western Balkan Mountains