Influence of Climate-Related Environmental Stresses on Economically Important Essential Oils of Mediterranean Salvia sp
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
35599878
PubMed Central
PMC9114806
DOI
10.3389/fpls.2022.864807
Knihovny.cz E-zdroje
- Klíčová slova
- Salvia L., bioactivity, chemodiversity, environmental stress, essential oil,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Salvia L. is the largest genus in the family Lamiaceae, with about 1,000 species and a nearly cosmopolitan distribution. Salvia species are used in both traditional and conventional medicines, and other numerous industries, such as spices and perfumes. The number of papers dealing with Salvia exceeds 12,000 and mostly investigates their chemical composition and bioactive properties. A smaller proportion of papers however consider environmental factors, mostly on the effects of microclimate conditions on its geographic distribution along an altitudinal or longitudinal gradient, and very few studies can be found on the effects of emerging stressors on the commercial production of sages of medicinal and economical importance. Here, we summarize available data on the essential oil composition of three economically important sages from the Mediterranean area, that is, Salvia officinalis, Salvia officinalis subsp. lavandulifolia, and Salvia fruticosa, and the effects of climate-related environmental stressors on their chemical profiles. Environmental stress factors, such as an increase in soil salinity and aridity, and changes in annual average temperatures, are going to impose a serious risk on the commercial production of sage essential oils, which are commercially produced in many European countries. This review highlights the already confirmed effects of these stressors on three selected Salvia species and consequently the importance of mitigating the effects of climate change on the commercial production of these essential oils.
Zobrazit více v PubMed
Alarcon-Aguilar F. J., Roman-Ramos R., Flores-Saenz J. L., Aguirre-Garcia F. (2002). Investigation on the hypoglycaemic effects of extracts of four Mexican medicinal plants in normal and Alloxan-diabetic mice. Phytother. Res. 16, 383–386. doi: 10.1002/ptr.914, PMID: PubMed DOI
Ardestani E. G., Ghahfarrokhi Z. H. (2021). Ensembpecies distribution modeling of Salvia hydrangea under future climate change scenarios in Central Zagros Mountains. Iran. Glob. Ecol. Conserv. 26:e01488. doi: 10.1016/j.gecco.2021.e01488 DOI
Arikat N. A., Jawad F. M., Karam N. S., Shibli R. A. (2004). Micropropagation and accumulation of essential oils in wild sage (Salvia fruticosa Mill.). Sci. Hortic. 100, 193–202. doi: 10.1016/j.scienta.2003.07.006 DOI
Avato P., Fortunato I. M., Ruta C., D’Elia R. (2005). Glandular hairs and essential oils in micropropagated plants of Salvia officinalis L. Plant Sci. 169, 29–36. doi: 10.1016/j.plantsci.2005.02.004 DOI
Bellomaria B., Arnold N., Valentini G., Arnold H. J. (1992). Contribution to the study of the essential oils from three species of Salvia growing wild in the eastern mediterranean region. J. Essent. Oil Res. 4, 607–614. doi: 10.1080/10412905.1992.9698143 DOI
Bettaieb I., Hamrouni-Sellami I., Bourgou S., Limam F., Marzouk B. (2011). Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiol. Plant. 33, 1103–1111. doi: 10.1007/s11738-010-0638-z DOI
Ćavar Zeljković S., Šišková J., Komzáková K., De Diego N., Kaffková K., Tarkowski P. (2021b). Phenolic compounds and biological activity of selected Mentha species. Plan. Theory 10:550. doi: 10.3390/plants10030550, PMID: PubMed DOI PMC
Ćavar Zeljković S., Smekalová K., Kaffková K., Štefelová N. (2021a). Influence of post-harvesting period on quality of thyme and spearmint essential oils. J. Appl. Res. Med. Aromat. Plants 25:100335. doi: 10.1016/j.jarmap.2021.100335 DOI
Chrysargyris A., Michailidi E., Tzortzakis N. (2018). Physiological and biochemical responses of Lavandula angustifolia to salinity under mineral foliar application. Front. Plant Sci. 9:489. doi: 10.3389/fpls.2018.00489, PMID: PubMed DOI PMC
Clebsch B. (2003). New Book of Salvias. Portland, USA: Timber Press.
Code of Federal Regulation (21CFR172.510) (2021). Food Additives Permitted for Direct Addition to Food for Human Consumption. Available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=172 (Accessed January 14, 2022).
Couladis M., Tzakou O., Mimica-Dukić N., Jančić R., Stojanović D. (2002). Essential oil of Salvia officinalis L. from Serbia and Montenegro. Flavour Fragr. J. 17, 119–126. doi: 10.1002/ffj.1065 DOI
Cutillas A. B., Carrasco A., Martinez-Gutierrez R., Tomas V., Tudela J. (2017). Composition and antioxidant, antienzymatic and antimicrobial activities of volatile molecules from Spanish Salvia lavandulifolia (Vahl) essential oils. Molecules 22:1382. doi: 10.3390/molecules22081382, PMID: PubMed DOI PMC
Cvetkovikj I., Stefkov G., Karapandzova M., Kulevanova S., Satovic Z. (2015). Essential oils and chemical diversity of southeast european populations of Salvia officinalis L. Chem. Biodivers. 12, 1025–1039. doi: 10.1002/cbdv.201400273, PMID: PubMed DOI
Damjanovic-Vratnica B., Ðakov T., Šukovic D., Damjanovic J. (2008). Chemical composition and antimicrobial activity of essential oil of wild-growing Salvia officinalis L. from Montenegro. J. Essent. Oil-Bear. Plant. 11, 79–89. doi: 10.1080/0972060X.2008.10643602 DOI
Delamare A. P. L., Moschen-Pistorello I. T., Artico L., Atti-Serafini L., Echeverrigaray S. (2007). Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil. Food Chem. 100, 603–608. doi: 10.1016/j.foodchem.2005.09.078 DOI
De Vincenzi M., Silano M., De Vincenzi A., Maialetti F., Bcazzocchio B. (2002). Constituents of aromatic plants: eucalyptol. Fitoterapia 73, 269–275. doi: 10.1016/S0367-326X(02)00062-X, PMID: PubMed DOI
di Pietro R. (2011). New dry grassland associations from the Ausoni-Aurunci mountains (Central Italy)–Syntaxonomical updating and discussion on the higher rank syntaxa. Hacquetia 10, 183–231. doi: 10.2478/v10028-011-0011-9 DOI
Ehrnhöfer-Ressler M. M., Fricke K., Pignitter M., Walker J. M., Walker J., Rychlik M., et al. . (2013). Identification of 1, 8-cineole, borneol, camphor, and thujone as anti-inflammatory compounds in a Salvia officinalis L. infusion using human gingival fibroblasts. J. Agric. Food Chem. 61, 3451–3459. doi: 10.1021/jf305472t, PMID: PubMed DOI
El-Sayed N. H., El-Eraky W., Ibrahim M. T., Mabry T. J. (2006). Antiinflammatory and ulcerogenic activities of Salvia triloba extracts. Fitoterapia 77, 333–335. doi: 10.1016/j.fitote.2006.04.002, PMID: PubMed DOI
European Commission (2019). “COM(2019) 640 Final. Green New Deal. Communication from the Commission to the European Parliament,” European Commission the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions [Preprint].
Exarchou V., Nenadis N., Tsimidou M., Gerothanassis I. P., Troganis A., Boskou D. (2002). Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J. Agric. Food Chem. 50, 5294–5299. doi: 10.1021/jf020408a, PMID: PubMed DOI
García-Caparrós P., Romero M. J., Llanderal A., Cermeño P., Lao M. T., Segura M. L. (2019). Effects of drought stress on biomass, essential oil content, nutritional parameters, and costs of production in six Lamiaceae species. WaterSA 11:573. doi: 10.3390/w11030573 DOI
Ghorbani A., Esmaeilizadeh M. (2017). Pharmacological properties of Salvia officinalis and its components. J. Tradit. Complement. Med. 7, 433–440. doi: 10.1016/J.JTCME.2016.12.014, PMID: PubMed DOI PMC
Giuliani C., Ascrizzi R., Tani C., Bottoni M., Bini L. M., Flamini G., et al. . (2017). Salvia uliginosa Benth.: glandular trichomes as bio-factories of volatiles and essential oil. Flora 233, 12–21. doi: 10.1016/j.flora.2017.05.002 DOI
Giweli A. A., Džamić A. M., Soković M., Ristić M. S., Janackovic P., Marin P. D. (2013). The chemical composition, antimicrobial and antioxidant activities of the essential oil of Salvia fruticosa growing wild in Libya. Arch. Biol. Sci. 65, 321–329. doi: 10.2298/ABS1301321G DOI
Herraiz-Peñalver D., Usano-Alemany J., Cuadrado J., Jordan M. J., Lax V., Sotomayor J. A., et al. . (2010). Essential oil composition of wild populations of Salvia lavandulifolia Vahl. From Castilla-La Mancha (Spain). Biochem. Syst. Ecol. 38, 1224–1230. doi: 10.1016/j.bse.2010.10.015 DOI
Hohmann J., Zupkó I., Rédei D., Csányi M., Falkay G., Máthé I., et al. . (1999). Protective effects of the aerial parts of Salvia officinalis, Melissa officinalis and Lavandula angustifolia and their constituents against enzyme-dependent and enzyme-independent lipid peroxidation. Planta Med. 65, 576–578. doi: 10.1055/s-2006-960830 PubMed DOI
Höld K. M., Sirisoma N. S., Sparks S. E., Casida J. E. (2002). Metabolism and mode of action of cis-and trans-3-pinanones (the active ingredients of hyssop oil). Xenobiotica 32, 251–265. doi: 10.1080/00498250110095745, PMID: PubMed DOI
ISO 3526 (2005). Oil of sage, Spanish (Salvia lavandulifolia Vahl).
ISO 9909 (1997). Oil of Dalmatian sage (Salvia officinalis L.).
Janda M., Ruelland E. (2015). Magical mystery tour: salicylic acid signalling. Environ. Exp. Bot. 114, 117–128. doi: 10.1016/J.ENVEXPBOT.2014.07.003 DOI
Jug-Dujaković M., Ristić M., Pljevljakušić D., Dajić-Stevanović Z., Liber Z., Hančević K., et al. . (2012). High diversity of indigenous populations of dalmatian sage (Salvia officinalis L.) in essential-oil composition. Chem. Biodivers. 9, 2309–2323. doi: 10.1002/cbdv.201200131, PMID: PubMed DOI
Karioti A., Skaltsa H., Demetzos C., Perdetzoglou D., Economakis C. D., Salem A. B. (2003). Effect of nitrogen concentration of the nutrient solution on the volatile constituents of leaves of Salvia fruticosa Mill. in solution culture. J. Agric. Food Chem. 51, 6505–6508. doi: 10.1021/jf030308k, PMID: PubMed DOI
Karousou R., Vokou D., Kokkini S. (1998). Variation of Salvia fruticosa essential oils on the island of Crete (Greece). Bot. Acta 111, 250–254. doi: 10.1111/j.1438-8677.1998.tb00705.x DOI
Kennedy D. O., Dodd F. L., Robertson B. C., Okello E. J., Reay J. L., Scholey A. B., et al. . (2011). Monoterpenoid extract of sage (Salvia lavandulaefolia) with cholinesterase inhibiting properties improves cognitive performance and mood in healthy adults. J. Psychopharmacol. 25, 1088–1100. doi: 10.1177/0269881110385594, PMID: PubMed DOI
Kulak M. (2020). Recurrent drought stress effects on essential oil profile of Lamiaceae plants: an approach regarding stress memory. Ind. Crop. Prod. 154:112695. doi: 10.1016/j.indcrop.2020.112695 DOI
Laanemets K., Brandt B., Li J., Merilo E., Wang Y. F., Keshwani M. M., et al. . (2013). Calcium-dependent and-independent stomatal signaling network and compensatory feedback control of stomatal opening via Ca2+ sensitivity priming. Plant Physiol. 163, 504–513. doi: 10.1104/pp.113.220343, PMID: PubMed DOI PMC
Lamien-Meda A., Schmiderer C., Lohwasser U., Börner A., Franz C., Novak J. (2010). Variability of the essential oil composition in the sage collection of the Genebank Gatersleben: a new viridiflorol chemotype. Flavour Fragr. J. 25, 75–82. doi: 10.1002/ffj.1969 DOI
Li B., Zhang C., Peng L., Liang Z., Yan X., Zhu Y., et al. . (2015). Comparison of essential oil composition and phenolic acid content of selected Salvia species measured by GC-MS and HPLC methods. Ind. Crop. Prod. 69, 329–334. doi: 10.1016/j.indcrop.2015.02.047 DOI
Lin K.-H., Lin T.-Y., Wu C.-W., Chang Y.-S., Barceló J. (2021). Protective effects of salicylic acid and calcium chloride on sage plants (Salvia officinalis L. and Salvia elegans Vahl) under high-temperature stress. Plan. Theory 10:2110. doi: 10.3390/plants10102110, PMID: PubMed DOI PMC
Llurba-Montesino N., Schmidt T. J. (2018). Salvia species as sources of natural products with antiprotozoal activity. Int. J. Mol. Sci. 19:264. doi: 10.3390/ijms19010264, PMID: PubMed DOI PMC
Lopresti A. L. (2016). Salvia (sage): a review of its potential cognitive-enhancing and protective effects. Drugs R. D. 17, 53–64. doi: 10.1007/s40268-016-0157-5, PMID: PubMed DOI PMC
Marchica A., Loré S., Cotrozzi L., Lorenzini G., Nali C., Pellegrini E., et al. . (2019). Early detection of sage (Salvia officinalis L.) responses to ozone using reflectance spectroscopy. Plan. Theory 8:346. doi: 10.3390/plants8090346, PMID: PubMed DOI PMC
Martins N., Barros L., Santos-Buelga C., Henriques M., Silva S., Ferreira I. C. (2015). Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem. 170, 378–385. doi: 10.1016/j.foodchem.2014.08.096, PMID: PubMed DOI
Máthé I., Máthé Á., Hohmann J., Janicsák G. (2010). Volatile and some non-volatile chemical constituents of Mediterranean Salvia species beyond their native area. Isr. J. Plant Sci. 58, 273–277. doi: 10.1560/IJPS.58.3-4.273 DOI
Méndez-Tovar I., Novak J., Sponza S., Herrero B., Asensio-S-Manzanera M. C. (2016). Variability in essential oil composition of wild populations of Labiatae species collected in Spain. Ind. Crop. Prod. 79, 18–28. doi: 10.1016/j.indcrop.2015.10.009 DOI
Mitić-Ćulafić D., Vuković-Gačić B. S., Knežević-Vukčević J. B., Stanković S., Simić D. M. (2005). Comparative study on the antibacterial activity of volatiles from sage (Salvia officinalis L.). Arch. Biol. Sci 57, 173–178. doi: 10.2298/ABS0503173M DOI
Moustakas M., Bayçu G., Sperdouli I., Eroğlu H., Eleftheriou E. P. (2020). Arbuscular mycorrhizal symbiosis enhances photosynthesis in the medicinal herb Salvia fruticosa by improving photosystem ii photochemistry. Plan. Theory 9, 1–18. doi: 10.3390/plants9080962, PMID: PubMed DOI PMC
Munné-Bosch S., Jubany-Marí T., Alegre L. (2001). Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell Environ. 24, 1319–1327. doi: 10.1046/j.1365-3040.2001.00794.x DOI
Nevkrytaya N., Novikov I., Soboleva E., Kashirina N., Radchenko L. (2021). Manifestation features of the productivity potential of Salvia officinalis L. in the conditions of the Crimea foothills. E3S Web Conf. 254:e01006. doi: 10.1051/e3sconf/202125401006 DOI
Ouzounidou G., Skiada V., Papadopoulou K. K., Stamatis N., Kavvadias V., Eleftheriadis E., et al. . (2015). Effects of soil pH and arbuscular mycorrhiza (AM) inoculation on growth and chemical composition of chia (Salvia hispanica L.) leaves. Rev. Bras. Bot. 38, 487–495. doi: 10.1007/s40415-015-0166-6 DOI
Palacio S., Montserrat-Marti G. (2006). Comparison of the bud morphology and shoot growth dynamics of four species of Mediterranean subshrub growing along an altitudinal gradient. Bot. J. Linn. Soc. 151, 527–539. doi: 10.1111/j.1095-8339.2006.00542.x DOI
Papafotiou M., Martini A. N., Papanikolaou E., Stylias E. G., Kalantzis A. (2021). Hybrids development between Greek salvia species and their drought resistance evaluation along with Salvia fruticosa, under Attapulgite-amended substrate. Agronomy 11:2401. doi: 10.3390/agronomy11122401 DOI
Pelkonen O., Abass K., Wiesner J. (2013). Thujone and thujone-containing herbal medicinal and botanical products: toxicological assessment. Regul. Toxicol. Pharmacol. 65, 100–107. doi: 10.1016/j.yrtph.2012.11.002, PMID: PubMed DOI
Pellegrini M., Ricci A., Serio A., Chaves-López C., Mazzarrino G., D’Amato S., et al. . (2018). Characterization of essential oils obtained from Abruzzo autochthonous plants: antioxidant and antimicrobial activities assessment for food application. Foods 7:19. doi: 10.3390/foods7020019, PMID: PubMed DOI PMC
Perry N. B., Anderson R. E., Brennan N. J., Douglas M. H., Heaney A. J., McGimpsey J. A., et al. . (1999). Essential oils from Dalmatian sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. J. Agric. Food Chem. 47, 2048–2054. doi: 10.1021/jf981170m, PMID: PubMed DOI
Perry N. S. L., Houghton P. J., Jenner P., Keith A., Perry E. K. (2002). Salvia lavandulaefolia essential oil inhibits cholinesterase in vivo. Phytomedicine 9, 48–51. doi: 10.1078/0944-7113-00082, PMID: PubMed DOI
Pitarokili D., Couladis M., Petsikos-Panayotarou N., Tzakou O. (2002). Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece. J. Agric. Food Chem. 50, 6688–6691. doi: 10.1021/jf020422n, PMID: PubMed DOI
Porres-Martínez M., González-Burgos E., Accame M. E. C., Gómez-Serranillos M. P. (2013). Phytochemical composition, antioxidant and cytoprotective activities of essential oil of Salvia lavandulifolia Vahl. Food Res. Int. 54, 523–531. doi: 10.1016/j.foodres.2013.07.029 DOI
Porres-Martínez M., González-Burgos E., Carretero M. E., Gómez-Serranillos M. P. (2014). Influence of phenological stage on chemical composition and antioxidant activity of Salvia lavandulifolia Vahl. Essential oils. Ind. Crop. Prod. 53, 71–77. doi: 10.1016/j.indcrop.2013.12.024 DOI
Pressey R. L., Cabeza M., Watts M. E., Cowling R. M., Wilson K. A. (2007). Conservation planning in a changing world. Trends Ecol. Evol. 22, 583–592. doi: 10.1016/J.TREE.2007.10.001, PMID: PubMed DOI
Raal A., Orav A., Arak E. (2007). Composition of the essential oil of Salvia officinalis L. from various European countries. Nat. Prod. Res. 21, 406–411. doi: 10.1080/14786410500528478, PMID: PubMed DOI
Radosavljević I., Satovic Z., Jakse J., Javornik B., Greguraš D., Jug-Dujaković M., et al. . (2012). Development of new microsatellite markers for Salvia officinalis L. and its potential use in conservation-genetic studies of narrow endemic salvia brachyodon Vandas. Int. J. Mol. Sci. 13, 12082–12093. doi: 10.3390/ijms130912082, PMID: PubMed DOI PMC
Radwan A., Kleinwächter M., Selmar D. (2017). Impact of drought stress on specialised metabolism: biosynthesis and the expression of monoterpene synthases in sage (Salvia officinalis). Phytochemistry 141, 20–26. doi: 10.1016/j.phytochem.2017.05.005, PMID: PubMed DOI
Ramezani S., Abbasi A., Sobhanverdi S., Shojaeiyan A., Ahmadi N. (2020). The effects of water deficit on the expression of monoterpene synthases and essential oils composition in Salvia ecotypes. Physiol. Mol. Biol. Plants 26, 2199–2207. doi: 10.1007/s12298-020-00892-1, PMID: PubMed DOI PMC
Regulation EC (2008). Regulation (EC) No 1334/2008 of the European Parliament and Council of 16 December 2008, European Commission.
Rioba N. B., Itulya F. M., Saidi M., Dudai N., Bernstein N. (2015). Effects of nitrogen, phosphorus and irrigation frequency on essential oil content and composition of sage (Salvia officinalis L.). J. Appl. Res. Med. Aromat. Plants 2, 21–29. doi: 10.1016/j.jarmap.2015.01.003 DOI
Sáez L. (2010). “Salvia L.” in Flora iberica. Vol. XII. Verbenaceae-Labiatae-Callitrichaceae. eds. Morales R., Quintanar A., Cabezas F., Pujadas A. J., Cirujano S. (Madrid: Real Jardín Botánico de Madrid (C.S.I.C.)), 298–326.
Sarrou E., Martens S., Chatzopoulou P. (2016). Metabolite profiling and antioxidative activity of sage (Salvia fruticosa Mill.) under the influence of genotype and harvesting period. Ind. Crop. Prod. 94, 240–250. doi: 10.1016/j.indcrop.2016.08.022 DOI
Schröder S., Beckmann K., Franconi G., Meyer-Hamme G., Friedemann T., Greten H. J., et al. . (2013). Can medical herbs stimulate regeneration or neuroprotection and treat neuropathic pain in chemotherapy-induced peripheral neuropathy? Evid. Based Complement. Alternat. Med. 2013:423713. doi: 10.1155/2013/423713, PMID: PubMed DOI PMC
Selmar D., Kleinwächter M. (2013). Influencing the product quality by deliberately applying drought stress during the cultivation of medicinal plants. Ind. Crop. Prod. 42, 558–566. doi: 10.1016/j.indcrop.2012.06.020 DOI
Şenol F. S., Orhan I. E., Erdem S. A., Kartal M., Şener B., Kan Y., et al. . (2011). Evaluation of cholinesterase inhibitory and antioxidant activities of wild and cultivated samples of sage (Salvia fruticosa) by activity-guided fractionation. J. Med. Food 14, 1476–1483. doi: 10.1089/jmf.2010.0158, PMID: PubMed DOI
Sirvent T., Gibson D. (2002). Induction of hypericins and hyperforin in Hypericum perforatum L. in response to biotic and chemical elicitors. Physiol. Mol. Plant Pathol. 60, 311–320. doi: 10.1006/PMPP.2002.0410 DOI
Steševic D., Ristic M., Nikolic V., Nedovic M., Cakovic D., Šatovic Z. (2014). Chemotype diversity of indigenous dalmatian sage (Salvia officinalis L.) populations in Montenegro. Chem. Biodivers. 11, 101–114. doi: 10.1002/cbdv.201300233, PMID: PubMed DOI
Taarit M. B., Msaada K., Hosni K., Hammami M., Kchouk M. E., Marzouk B. (2009). Plant growth, essential oil yield and composition of sage (Salvia officinalis L.) fruits cultivated under salt stress conditions. Ind. Crop. Prod. 30, 333–337. doi: 10.1016/J.INDCROP.2009.06.001 DOI
Taarit M. B., Msaada K., Hosni K., Marzouk B. (2010). Changes in fatty acid and essential oil composition of sage (Salvia officinalis L.) leaves under NaCl stress. Food Chem. 119, 951–956. doi: 10.1016/J.FOODCHEM.2009.07.055 DOI
Triantaphyllou K., Blekas G., Boskou D. (2001). Antioxidative properties of water extracts obtained from herbs of the species Lamiaceae. Int. J. Food Sci. Nutr. 52, 313–317. doi: 10.1080/09637480120057512, PMID: PubMed DOI
Turek C., Stintzing F. C. (2013). Stability of essential oils. Compr. Rev. Food Sci. Food Saf. 12, 40–53. doi: 10.1111/1541-4337.12006 DOI
Uc A., Bishop W. P., Sanders K. D. (2000). Camphor hepatotoxicity. South. Med. J. 93, 596–598. doi: 10.1097/00007611-200093060-00011, PMID: PubMed DOI
Usano-Alemany J., Palá-Paúl J., Herráiz-Peñalver D. (2014). Comprehensive phenological description of essential-oil chemotypes of Salvia lavandulifolia VAHL grown under the same environmental conditions. Chem. Biodivers. 11, 1963–1977. doi: 10.1002/cbdv.201400090, PMID: PubMed DOI
Usano-Alemany J., Palá-Paúl J., Herráiz-Peñalver D. (2016). Essential oil yields and qualities of different clonal lines of Salvia lavandulifolia monitored in Spain over four years of cultivation. Ind. Crop. Prod. 80, 251–261. doi: 10.1016/J.INDCROP.2015.11.010 DOI
Valdez J. S., Martin D. K., Mayersohn M. (1999). Sensitive and selective gas chromatographic methods for the quantitation of camphor, menthol and methyl salicylate from human plasma. J. Chromatogr. B 729, 163–171. doi: 10.1016/s0378-4347(99)00161-9, PMID: PubMed DOI
Vuković-Gačić B., Nikčević S., Berić-Bjedov T., Knežević-Vukčević J., Simić D. (2006). Antimutagenic effect of essential oil of sage (Salvia officinalis L.) and its monoterpenes against UV-induced mutations in Escherichia coli and Saccharomyces cerevisiae. Food Chem. Toxicol. 44, 1730–1738. doi: 10.1016/j.fct.2006.05.011, PMID: PubMed DOI
Walker J. B., Sytsma K. J., Treutlein J., Wink M. (2004). Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am. J. Bot. 91, 1115–1125. doi: 10.3732/ajb.91.7.1115, PMID: PubMed DOI
Wilhelm C., Selmar D. (2011). Energy dissipation is an essential mechanism to sustain the viability of plants: the physiological limits of improved photosynthesis. J. Plant Physiol. 168, 79–87. doi: 10.1016/j.jplph.2010.07.012, PMID: PubMed DOI
Zgheib R., Yassine C., Azzi-Achkhouty S., Beyrouthy M. E. (2019). Investigation of essential oil chemical polymorphism of Salvia fruticosa naturally growing in Lebanon. J. Essent. Oil-Bear. Plants 22, 408–430. doi: 10.1080/0972060X.2019.1623085 DOI
Zohra Es-Sbihi F., Hazzoumi Z., Aasfar A., Joutei K. A. (2021). Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chem. Biol. Technol. Agric. 8:25. doi: 10.1186/s40538-021-00221-y DOI