Triazoles as a Potential Threat to the Nutritional Quality of Tomato Fruits
Status Publisher Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
research area Biochemistry (120 015)
Charles University
SVV 260691/2023
Charles University
CZ.02.1.01/0.0/0.0/16_019/0000827
Ministry of Education Youth and Sports
RO0423
Ministry of Agriculture of the Czech Republic
PubMed
37755268
PubMed Central
PMC10536328
DOI
10.3390/metabo13090988
PII: metabo13090988
Knihovny.cz E-zdroje
- Klíčová slova
- fruit, nutrition, penconazole, stress, tebuconazole, tomato, triazoles,
- Publikační typ
- časopisecké články MeSH
Triazole fungicides can threaten plants as abiotic stressors but can also positively affect plant defense by inducing priming. Thus, plant yield is also both protected and endangered by triazoles that may influence several metabolic pathways during maturation processes, such as the biosynthesis of saccharides or secondary metabolites. Here, Solanum lycopersicum L. plants were exposed to foliar and soil applications of penconazole, tebuconazole, or their combination, and their resulting effect on tomato fruits was followed. The exposure to the equimolar mixture of both triazoles influenced the representation of free proteinogenic amino acids, especially Gln, Glu, Gly, Ile, Lys, Ser and Pro, saccharide content, and led to a significant increase in the contents of total phenolics and flavonoids as well as positive stimulation of the non-enzymatic antioxidant system. Among the identified secondary metabolites, the most abundant was naringenin, followed by chlorogenic acid in tomato peel. In turn, all triazole-treated groups showed a significantly lower content of rosmarinic acid in comparison with the control. Foliar application of penconazole affected the fruit more than other single triazole applications, showing a significant decrease in antioxidant capacity, the total content of secondary metabolites, and the activities of total membrane-bound peroxidases and ascorbate peroxidase.
Zobrazit více v PubMed
Seymour G.B., Østergaard L., Chapman N.H., Knapp S., Martin C. Fruit development and ripening. Annu. Rev. Plant Biol. 2013;64:219–241. doi: 10.1146/annurev-arplant-050312-120057. PubMed DOI
Boeing H., Bechthold A., Bub A., Ellinger S., Haller D., Kroke A., Leschik-Bonnet E., Müller M.J., Oberritter H., Schulze M., et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012;51:637–663. doi: 10.1007/s00394-012-0380-y. PubMed DOI PMC
Tohge T., Alseekh S., Fernie A.R. On the regulation and function of secondary metabolism during fruit development and ripening. J. Exp. Bot. 2014;65:4599–4611. doi: 10.1093/jxb/ert443. PubMed DOI
Chaudhary P., Sharma A., Singh B., Nagpal A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018;55:2833–2849. doi: 10.1007/s13197-018-3221-z. PubMed DOI PMC
Nohara T., Ono M., Ikeda T., Fujiwara Y., El-Aasr M. The tomato saponin, esculeoside A. J. Nat. Prod. 2010;73:1734–1741. doi: 10.1021/np100311t. PubMed DOI
Friedman M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J. Agric. Food Chem. 2015;63:3323–3337. doi: 10.1021/acs.jafc.5b00818. PubMed DOI
Bělonožníková K., Hýsková V., Chmelík J., Kavan D., Čeřovská N., Ryšlavá H. Pythium oligandrum in plant protection and growth promotion: Secretion of hydrolytic enzymes, elicitors and tryptamine as auxin precursor. Microbiol. Res. 2022;258:126976. doi: 10.1016/j.micres.2022.126976. PubMed DOI
Jakl M., Ćavar Zeljković S., Kovač I., Bělonožníková K., Jaklová Dytrtová J. Side effects of triazoles on treated crops. Chemosphere. 2021;277:130242. doi: 10.1016/j.chemosphere.2021.130242. PubMed DOI
Jakl M., Kovač I., Ćavar Zeljković S., Jaklová Dytrtová J. Triazole fungicides in soil affect the yield of fruit, green biomass, and phenolics production of Solanum lycopersicum L. Food Chem. 2021;351:129328. doi: 10.1016/j.foodchem.2021.129328. PubMed DOI
Egbuta C., Lo J., Ghosh D. Mechanism of inhibition of estrogen biosynthesis by azole fungicides. Endocrinology. 2014;155:4622–4628. doi: 10.1210/en.2014-1561. PubMed DOI PMC
Zarn J.A., Brüschweiler B.J., Schlatter J.R. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14 alpha-demethylase and aromatase. Environ. Health Perspect. 2003;111:3. doi: 10.1289/ehp.5785. PubMed DOI PMC
Dvořák Z. Drug-drug interactions by azole antifungals: Beyond a dogma of CYP3A4 enzyme activity inhibition. Toxicol. Lett. 2011;202:129–132. doi: 10.1016/j.toxlet.2011.01.027. PubMed DOI
Lepesheva G.I., Virus C., Waterman M.R. Conservation in the CYP51 family. Role of the B’ helix/BC loop and helices F and G in enzymatic function. Biochemistry. 2003;42:9091–9101. doi: 10.1021/bi034663f. PubMed DOI
Arias M., Paradelo M., López E., Simal-Gándara J. Influence of pH and soil copper on adsorption of metalaxyl and penconazole by the surface layer of vineyard soils. J. Agric. Food Chem. 2006;54:8155–8162. doi: 10.1021/jf061526r. PubMed DOI
Jakl M., Fanfrlík J., Jaklová Dytrtová J. Mimicking of cyproconazole behavior in the presence of Cu and Zn. Rapid Commun. Mass Spectrom. 2017;31:2043–2050. doi: 10.1002/rcm.7988. PubMed DOI
Jaklová Dytrtová J., Bělonožníková K., Jakl M., Ryšlavá H. Triazoles and aromatase: The impact of copper cocktails. Environ. Pollut. 2020;266:115201. doi: 10.1016/j.envpol.2020.115201. PubMed DOI
Jaklová Dytrtová J., Jakl M., Schröder D., Čadková E., Komárek M. Complexation between the fungicide tebuconazole and copper(II) probed by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 2011;25:1037–1042. doi: 10.1002/rcm.4957. PubMed DOI
Jaklová Dytrtová J., Straka M., Bělonožníková K., Jakl M., Ryšlavá H. Does resveratrol retain its antioxidative properties in wine? Redox behaviour of resveratrol in the presence of Cu(II) and tebuconazole. Food Chem. 2018;262:221–225. doi: 10.1016/j.foodchem.2018.04.096. PubMed DOI
Jaklová Dytrtová J., Bělonožníková K., Jakl M., Chmelík J., Kovač I., Ryšlavá H. Non-target biotransformation enzymes as a target for triazole-zinc mixtures. Chem. Biol. Interact. 2023;382:110625. doi: 10.1016/j.cbi.2023.110625. PubMed DOI
Valadas J., Mocelin R., Sachett A., Marcon M., Zanette R.A., Dallegrave E., Herrmann A.P., Piato A. Propiconazole induces abnormal behavior and oxidative stress in zebrafish. Environ. Sci. Pollut. Res. Int. 2019;26:27808–27815. doi: 10.1007/s11356-019-05977-3. PubMed DOI
Mallano A.I., Yu J., Dina T., Li F., Ling T., Ahmad N., Bennetzen J., Tong W. Soil and fine root-associated microbial communities are niche dependent and inf luenced by copper fungicide treatment during tea plant cultivation. Hortic. Res. 2023;10:uhac285. doi: 10.1093/hr/uhac285. PubMed DOI PMC
Bhagat J., Singh N., Nishimura N., Shimada Y. A comprehensive review on environmental toxicity of azole compounds to fish. Chemosphere. 2021;262:128335. doi: 10.1016/j.chemosphere.2020.128335. PubMed DOI
Casida J.E. Pest toxicology: The primary mechanisms of pesticide action. Chem. Res. Toxicol. 2009;22:609–919. doi: 10.1021/tx8004949. PubMed DOI
Chen Z.-F., Ying G.-G. Occurrence, fate and ecological risk of five typical azole fungicides as therapeutic and personal care products in the environment: A review. Environ. Int. 2015;84:142–153. doi: 10.1016/j.envint.2015.07.022. PubMed DOI
Schmidt F., Marx-Stoelting P., Haider W., Heise T., Kneuer C., Ladwig M., Banneke S., Rieke S., Niemann L. Combination effects of azole fungicides in male rats in a broad dose range. Toxicology. 2016;355:54–63. doi: 10.1016/j.tox.2016.05.018. PubMed DOI
Cao F., Souders I.C.L., Li P., Pang S., Qiu L., Martyniuk C.J. Developmental toxicity of the triazole fungicide cyproconazole in embryo-larval stages of zebrafish (Danio rerio) Environ. Sci. Pollut. Res. 2019;26:4913–4923. doi: 10.1007/s11356-018-3957-z. PubMed DOI
Li S., Sun Q., Wu Q., Gui W., Zhu G., Schlenk D. Endocrine disrupting effects of tebuconazole on different life stages of zebrafish (Danio rerio) Environ. Pollut. 2019;249:1049–1059. doi: 10.1016/j.envpol.2019.03.067. PubMed DOI
Taxvig C., Vinggaard A.M., Hass U., Axelstad M., Metzdorff S., Nellemann C. Endocrine-disrupting properties in vivo of widely used azole fungicides. Int. J. Androl. 2008;31:170–176. doi: 10.1111/j.1365-2605.2007.00838.x. PubMed DOI
Trösken E.R., Fischer K., Völkel W., Lutz W.K. Inhibition of human CYP19 by azoles used as antifungal agents and aromatase inhibitors, using a new LC-MS/MS method for the analysis of estradiol product formation. Toxicology. 2006;219:33–40. doi: 10.1016/j.tox.2005.10.020. PubMed DOI
Petit A.-N., Fontaine F., Vatsa P., Clement C., Vaillant-Gaveau N. Fungicide impacts on photosynthesis in crop plants. Photosynth. Res. 2012;111:315–326. doi: 10.1007/s11120-012-9719-8. PubMed DOI
Fletcher R.A., Gilley A., Sankhla N., Davis T.M. Triazoles as plant growth regulators and stress protectants. Hort. Rev. 2000;24:56–138. doi: 10.1002/9780470650776.ch3. DOI
Jaleel C.A., Gopi R., Panneerselvam R. Growth and photosynthetic pigments responses of two varieties of Catharanthus roseus to triadimefon treatment. C. R. Biol. 2008;331:272–277. doi: 10.1016/j.crvi.2008.01.004. PubMed DOI
Deng Y., Liu R., Zheng M., Cai C., Diao J., Zhou Z. Hexaconazole application saves the loss of grey mold disease but hinders tomato fruit ripening in healthy plants. J. Agric. Food Chem. 2022;70:3948–3957. doi: 10.1021/acs.jafc.2c00109. PubMed DOI
Kovač I., Jakl M., Šolínová V., Konášová R., Kašička V., Jaklová Dytrtová J. Micellar electrokinetic chromatography in the determination of triazoles in fruit peel. J. Chromatogr. A. 2021;1652:462385. doi: 10.1016/j.chroma.2021.462385. PubMed DOI
Zhao S., Li M., Simal-Gandara J., Tian J., Chen J., Dai X., Kong Z. Impact of chiral tebuconazole on the flavor components and color attributes of Merlot and Cabernet Sauvignon wines at the enantiomeric level. Food Chem. 2022;373:131577. doi: 10.1016/j.foodchem.2021.131577. PubMed DOI
Xiao O., Li M., Chen J., Li R., Quan R., Zhang Z., Kong Z., Dai X. Influence of triazole pesticides on wine flavor and quality based on multidimensional analysis technology. Molecules. 2020;25:5596. doi: 10.3390/molecules25235596. PubMed DOI PMC
Brauer V.S., Rezende C.P., Pessoni A.M., De Paula R.G., Rangappa K.S., Nayaka S.C., Gupta V.K., Almeida F. Antifungal agents in agriculture: Friends and foes of public health. Biomolecules. 2019;9:521. doi: 10.3390/biom9100521. PubMed DOI PMC
Esquivel B.D., White T.D. Accumulation of azole drugs in the fungal plant pathogen Magnaporthe oryzae is the result of facilitated diffusion influx. Front. Microbiol. 2017;8:1320. doi: 10.3389/fmicb.2017.01320. PubMed DOI PMC
Hodek O., Krizek T., Coufal P., Ryslava H. Design of experiments for amino acid extraction from tobacco leaves and their subsequent determination by capillary zone electrophoresis. Anal. Bioanal. Chem. 2017;409:2383–2391. doi: 10.1007/s00216-017-0184-2. PubMed DOI
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. PubMed DOI
Hýsková V., Bělonožníková K., Doričová V., Kavan D., Gillarová S., Henke S., Synková H., Ryšlavá H., Čeřovská N. Effects of heat treatment on metabolism of tobacco plants infected with Potato virus Y. Plant Biol. J. 2021;23:131–141. doi: 10.1111/plb.13234. PubMed DOI
Dubois M., Gilles K., Hamilton J.K., Rebers P.A., Smith F. A colorimetric method for the determination of sugars. Nature. 1951;168:167. doi: 10.1038/168167a0. PubMed DOI
Tomníková A., Kozlík P., Křížek T. Monosaccharide profiling of glycoproteins by capillary electrophoresis with contactless conductivity detection. Electrophoresis. 2022;43:1963–1970. doi: 10.1002/elps.202200033. PubMed DOI
Tupec M., Hýsková V., Bělonožníková K., Hraníček J., Červený V., Ryšlavá H. Characterization of some potential medicinal plants from Central Europe by their antioxidant capacity and the presence of metal elements. Food Biosci. 2017;20:43–50. doi: 10.1016/j.fbio.2017.08.001. DOI
Herald T.J., Gadgil P., Tilley M. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric. 2012;92:2326–2331. doi: 10.1002/jsfa.5633. PubMed DOI
Gupta P., Sreelakshmi Y., Sharma R. A rapid and sensitive method for determination of carotenoids in plant tissues by high performance liquid chromatography. Plant Methods. 2015;11:5. doi: 10.1186/s13007-015-0051-0. PubMed DOI PMC
Lichtenthaler H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Meth. Enzymol. 1987;148:350–382. doi: 10.1016/0076-6879(87)48036-1. DOI
Ćavar Zeljković S., Šišková J., Komzáková K., De Diego N., Kaffková K., Tarkowski P. Phenolic Compounds and Biological Activity of Selected Mentha Species. Plants. 2021;10:550. doi: 10.3390/plants10030550. PubMed DOI PMC
Ryšlavá H., Pomeislová A., Pšondrová S., Hýsková V., Smrček S. Phytoremediation of carbamazepine and its metabolite 10,11-epoxycarbamazepine by C3 and C4 plants. Environ. Sci. Pollut. Res. 2015;22:20271–20282. doi: 10.1007/s11356-015-5190-3. PubMed DOI
Ismaiel A.A., Papenbrock J. Effect of patulin from Penicillium vulpinum on the activity of glutathione-S-transferase and selected antioxidative enzymes in maize. Int. J. Environ. Res. Public Health. 2017;14:825. doi: 10.3390/ijerph14070825. PubMed DOI PMC
Spoustová P., Hýsková V., Müller K., Schnablová R., Ryšlavá H., Čeřovská N., Malbeck J., Cvikrová M., Synková H. Tobacco susceptibility to Potato virus Y-NTN infection is affected by grafting and endogenous cytokinin content. Plant Sci. 2015;235:25–36. doi: 10.1016/j.plantsci.2015.02.017. PubMed DOI
Mittler R., Zilinskas B.A. Detection of ascorbate peroxidase-activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal. Biochem. 1993;212:540–546. doi: 10.1006/abio.1993.1366. PubMed DOI
Synková H., Semoradová S., Schnablová R., Müller K., Pospíšilová J., Ryšlavá H., Malbeck J., Čeřovská N. Effects of biotic stress caused by Potato virus Y on photosynthesis in ipt transgenic and control Nicotiana tabacum L. Plant Sci. 2006;171:607–616. doi: 10.1016/j.plantsci.2006.06.002. DOI
Lin C.L., Chen H.J., Hou W.C. Activity staining of glutathione peroxidase after electrophoresis on native and sodium dodecyl sulfate polyacrylamide gels. Electrophoresis. 2002;23:513–516. doi: 10.1002/1522-2683(200202)23:4<513::AID-ELPS513>3.0.CO;2-J. PubMed DOI
Ferguson K.A. Starch-gel electrophoresis—Application to the classification of pituitary proteins and polypeptides. Metabolism. 1964;13:985–1002. doi: 10.1016/S0026-0495(64)80018-4. PubMed DOI
Waskom M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021;6:3021. doi: 10.21105/joss.03021. DOI
Quinet M., Angosto T., Yuste-Lisbona F.J., Blanchard-Gros R., Bigot S., Martinez J.P., Lutts S. Tomato fruit development and metabolism. Front. Plant Sci. 2019;10:1554. doi: 10.3389/fpls.2019.01554. PubMed DOI PMC
Zhang J., Liu S., Zhu X., Chang Y., Wang C., Ma N., Wang J., Zhang X., Lyu J., Xie J. A comprehensive evaluation of tomato fruit quality and identification of volatile compounds. Plants. 2023;12:2947. doi: 10.3390/plants12162947. PubMed DOI PMC
Ali M.Y., Sina A.A.I., Khandker S.S., Neesa L., Tanvir E.M., Kabir A.M., Khalil M.I., Gan S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods. 2021;10:45. doi: 10.3390/foods10010045. PubMed DOI PMC
Dixon G.R. Amino acid changes during the early stages of tomato wilt disease (Verticillium albo-atrum) Plant Prot. Sci. 2021;57:140–147. doi: 10.17221/136/2020-PPS. DOI
Zhu C., Wu S., Sun T., Zhou Z., Hu Z., Yu J. Rosmarinic acid delays tomato fruit ripening by regulating ripening-associated traits. Antioxidants. 2021;10:1821. doi: 10.3390/antiox10111821. PubMed DOI PMC
Zheng M., Deng Y., Zhou Y., Liu R., Liu Y., Wang H., Zhu W., Zhou Z., Diao J. Multifaceted effects of difenoconazole in tomato fruit ripening: Physiology, flavour and nutritional quality. Plant Physiol. Biochem. 2023;194:223–235. doi: 10.1016/j.plaphy.2022.11.015. PubMed DOI
Dai Z., Zheng W., Locasale J.W. Amino acid variability, tradeoffs and optimality in human diet. Nat. Commun. 2022;13:6683. doi: 10.1038/s41467-022-34486-0. PubMed DOI PMC
Panche A.N., Diwan A.D., Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016;5:e47. doi: 10.1017/jns.2016.41. PubMed DOI PMC
Maddocks O.D.K., Athineos D., Cheung E.C., Lee P., Zhang T., van den Broek N.J.F., Mackay G.M., Labuschagne C.F., Gay D., Kruiswijk F., et al. Modulating the therapeutic response of tumours to dietary serine and glycine starvation. Nature. 2017;544:372–376. doi: 10.1038/nature22056. PubMed DOI
Muthusamy T., Cordes T., Handzlik M.K., You L., Lim E.W., Gengatharan J., Pinto A.F.M., Badur M.G., Kolar M.J., Wallace M., et al. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature. 2020;586:790–795. doi: 10.1038/s41586-020-2609-x. PubMed DOI PMC
Stabrauskiene J., Kopustinskiene D.M., Lazauskas R., Bernatoniene J. Naringin and naringenin: Their mechanisms of action and the potential anticancer activities. Biomedicines. 2022;10:1686. doi: 10.3390/biomedicines10071686. PubMed DOI PMC
Chen H.C., Li Q., Shuford C.M., Liu J., Muddiman D.C., Sederoff R.R., Chiang V.L. Membrane protein complexes catalyze both 4- and 3-hydroxylation of cinnamic acid derivatives in monolignol biosynthesis. Proc. Natl. Acad. Sci. USA. 2011;108:21253–21258. doi: 10.1073/pnas.1116416109. PubMed DOI PMC
Swayambhu G., Raghavan I., Ravi B.G., Pfeifer B.A., Wang Z.Q. Salicylate glucoside as a nontoxic plant protectant alternative to salicylic acid. ACS Agric. Sci. Technol. 2021;1:515–521. doi: 10.1021/acsagscitech.1c00131. DOI
Feng K., Yu J., Cheng Y., Ruan M., Wang R., Ye Q., Zhou G., Li Z., Yao Z., Yang Y., et al. The SOD gene family in tomato: Identification, phylogenetic relationships, and expression patterns. Front. Plant Sci. 2016;7:1279. doi: 10.3389/fpls.2016.01279. PubMed DOI PMC
Rabert G.A., Manivannan P., Somasundaram R., Panneerselvam R. Triazole compounds alters the antioxidant and osmoprotectant status in drought stressed Helianthus annuus L. plants. Emir. J. Food Agric. 2014;26:265–276. doi: 10.9755/ejfa.v26i3.17385. DOI
Sofy M.R., Elhindi K.M., Farouk S., Alotaibi M.A. Zinc and paclobutrazol mediated regulation of growth, upregulating antioxidant aptitude and plant productivity of pea plants under salinity. Plants. 2020;9:1197. doi: 10.3390/plants9091197. PubMed DOI PMC
Wang S., Zhou H., Feng N., Xiang H., Liu Y., Wang F., Li W., Feng S., Liu M., Zheng D. Physiological response of soybean leaves to uniconazole under waterlogging stress at R1 stage. J. Plant Physiol. 2022;268:153579. doi: 10.1016/j.jplph.2021.153579. PubMed DOI
Heydari H., Shaki F., Niknam V., Ebrahimzadeh Maboud H. Different effects of penconazole on enzymatic and non-enzymatic antioxidants of sesame (Sesamum indicum L.) under salinity. Mod. Concepts Dev. Agron. 2019;4:467–473. doi: 10.31031/MCDA.2019.04.000596. DOI
Tuna A.L. Influence of foliarly applied different triazole compounds on growth, nutrition, and antioxidant enzyme activities in tomato (Solanum lycopersicum L.) under salt stress. Aust. J. Crop Sci. 2014;8:71–79.
Trovato M., Funck D., Forlani G., Okumoto S., Amir R. Editorial: Amino acids in plants: Regulation and functions in development and stress defense. Front. Plant Sci. 2021;12:772810. doi: 10.3389/fpls.2021.772810. PubMed DOI PMC
Arsand D.R., Soares da Cunha S., Fuentes-Guevara M.D., Ramires Araujo T., Gilberto Primel E., Caldas Barbosa S., Érico Kunde Corrêa E. Photodegradation of tebuconazole in aqueous solution and phytotoxic effects. [(accessed on 25 July 2023)];Environ. Eng. Manag. J. 2021 20:1535–1542. Available online: https://eemj.eu/index.php/EEMJ/article/view/4393.
Zhang X., Wang X., Luo F., Sheng H., Zhou L., Zhong Q., Lou Z., Sun H., Yang M., Cui X., et al. Application and enantioselective residue determination of chiral pesticide penconazole in grape, tea, aquatic vegetables and soil by ultra performance liquid chromatography-tandem mass spectrometry. Ecotox. Environ. Saf. 2019;172:530–537. doi: 10.1016/j.ecoenv.2019.01.103. PubMed DOI