Effects of heat treatment on metabolism of tobacco plants infected with Potato virus Y
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
1304119
Grantová Agentura, Univerzita Karlova
SVV260427/2020
Grantová Agentura, Univerzita Karlova
CZ.02.1.01/0.0/0.0/16_019/0000738
Ministry of Education, Youth and Sports of CR through the European Regional Development Fund-Project "Centre for Experimental Plant Biology"
PubMed
33417742
DOI
10.1111/plb.13234
Knihovny.cz E-zdroje
- Klíčová slova
- Potato virus Y, Hatch-Slack cycle, Hsp70, Hsp90, glycosidases, heat shock, phenolic acids,
- MeSH
- Potyvirus * MeSH
- proteiny tepelného šoku HSP70 MeSH
- reakce na tepelný šok MeSH
- tabák MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteiny tepelného šoku HSP70 MeSH
Many factors affect successful virus propagation and plant defence responses. Heat shock protein (Hsp) expression after heat shock plays an ambiguous role in viral infection. On the one hand, Hsp70 participates in plant defence response; on the other hand, Hsp70 could interact with viral proteins and facilitate virus propagation. Here, we studied metabolic adaptations of Nicotiana tabacum L. subjected to heat shock (42 °C, 2 h) before or after inoculating the plants with Potato virus Y (potyvirus). RT-qPCR and ELISA were used for potyvirus quantification. Hsp70 and Hsp90 isoforms were analysed by Western blotting. Salicylic, quinic and chlorogenic acid content was determined by LC-MS. The activity of Hatch-Slack enzymes (as markers of potyviral infection in tobacco) and glycosidases was assayed. Application of heat shock before or after inoculation showed accelerated potyviral propagation in comparison with only inoculated plants. Plants exposed to heat shock and concurrently inoculated showed higher potyviral content, higher amount of Hsp70, together with late decline of quinic acid content and low chlorogenic acid content. Spread of potyviral infection correlated with enhanced salicylic acid content and activities of enzymes of the Hatch-Slack cycle, α- and β-galactosidase, α-mannosidase, α-glucosidase and β-N-acetylhexosaminidase. Heat shock proteins accelerate potyviral propagation. The lower weight cytosolic and mitochondrial Hsp70 (~50-75 kDa) persist throughout the viral infection. Also, the plant defense response results in increase of salicylic and chlorogenic acids but decrease of quinic acid content.
Department of Biochemistry Faculty of Science Charles University Prague 2 Czech Republic
Institute of Experimental Botany Academy of Sciences of the CR Praha 6 Czech Republic
Zobrazit více v PubMed
Achachi A., Ait Barka E., Ibriz M. (2014) Recent advances in Citrus psorosis virus. VirusDisease, 25, 261-276.
Agut B., Gamir J., Jacas J.A., Hurtado M., Flors V. (2014) Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae. Pest Management Science, 70, 1728-1741.
Ali S., Ganai B.A., Kamili A.N., Bhat A.A., Mir Z.A., Bhat J.A., Tyagi A., Islam S.T., Mushtaq M., Yadav P., Rawat S., Grover A. (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiological Research, 212-213, 29-37.
Anaraki Z.E., Tafreshi S.A.H., Shariati M. (2018) Transient silencing of heat shock proteins showed remarkable roles for HSP70 during adaptation to stress in plants. Environmental and Experimental Botany, 155, 142-157.
Belonoznikova K., Vaverova K., Vanek T., Kolarik M., Hyskova V., Vankova R., Dobrev P., Krizek T., Hodek O., Cokrtova K., Stipek A., Ryslava H. (2020) Novel insights into the effect of Pythium strains on rapeseed metabolism. Microorganisms, 8, 1472.
Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254.
Carrington J.C., Kasschau K.D., Mahajan S.K., Schaad M.C. (1996) Cell-to-cell and long-distance transport of viruses in plants. The Plant Cell, 8, 1669-1681.
Cerovska N. (1998) Production of monoclonal antibodies to potato virus YNTN strain and their use for strain differentiation. Plant Pathology, 47, 505-509.
Chastain C.J., Xu W., Parsley K., Sarath G., Hibberd J.M., Chollet R. (2008) The pyruvate, orthophosphate dikinase regulatory proteins of Arabidopsis possess a novel, unprecedented Ser/Thr protein kinase primary structure. The Plant Journal, 53, 854-863.
Chen Z., Zhou T., Wu X., Hong Y., Fan Z., Li H. (2008) Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana. Molecular Plant Pathology, 9, 809-817.
Clifford M.N., Jaganath I.B., Ludwig I.A., Crozier A. (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Natural Product Reports, 34, 1391-1421.
Doubnerova V., Janoskova M., Synkova H., Subr Z., Cerovska N., Ryslava H. (2007) Effect of Potato virus Y on activities of antioxidant and anapleurotic enzymes in transgenic Nicotiana tabacum L. plants with the gene for P3 protein General and Applied. Plant Physiology, 33, 123-140.
Doubnerova V., Muller K., Cerovska N., Synkova H., Spoustova P., Ryslava H. (2009) Effect of Potato Virus Y on the NADP-malic enzyme from Nicotiana tabacum L.: mRNA, expressed protein and activity. International Journal of Molecular Science, 10, 3583-3598.
Doubnerova V., Ryslava H. (2011) What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Science, 180, 575-583.
Doubnerova V., Ryslava H. (2014) Roles of Hsp70 in plant abiotic stress. In: Gaur R.K., Sharma P. (Eds), Molecular approaches in plant abiotic stress. CRC Press, Boca Raton, FL, USA, pp 44-66.
Dubois M., Gilles K., Hamilton J.K., Rebers P.A., Smith F. (1951) A colorimetric method for the determination of sugars. Nature, 168, 167.
Dufresne P.J., Thivierge K., Cotton S., Beauchemin C., Ide C., Ubalijoro E., Laliberte J.F., Fortin M.G. (2008) Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology, 374, 217-227.
Fageria M.S., Singh M., Nanayakkara U., Pelletier Y., Nie X., Wattie D. (2013) Monitoring current-season spread of Potato virus Y in potato fields using ELISA and Real-Time RT-PCR. Plant Disease, 97, 641-644.
Gaffar F.Y., Koch A. (2019) Catch me if you can! RNA silencing-based improvement of antiviral plant immunity. Viruses, 11, 673.
Gorovits R., Czosnek H. (2017) The involvement of heat shock proteins in the establishment of Tomato yellow leaf curl virus infection. Frontiers in Plant Science, 8, 355.
Hafren A., Hofius D., Ronnholm G., Sonnewald U., Makinen K. (2010) HSP70 and its cochaperone CPIP promote Potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. The Plant Cell, 22, 523-535.
Heinlein M. (2015) Plasmodesmata: channels for viruses on the move. Methods in Molecular Biology, 1217, 25-52.
Hofius D., Maier A.T., Dietrich C., Jungkunz I., Bornke F., Maiss E., Sonnewald U. (2007) Capsid protein-mediated recruitment of host DnaJ-Like proteins is required for Potato virus Y infection in tobacco plants. Journal of Virology, 81, 11870-11880.
Hyskova V., Pliskova V., Cerveny V., Ryslava H. (2017) NADP-dependent enzymes are involved in response to salt and hypoosmotic stress in cucumber plants. General Physiology and Biophysics, 36, 247-258.
Jiang S., Lu Y., Li K., Lin L., Zheng H., Yan F., Chen J. (2014) Heat shock protein 70 is necessary for Rice stripe virus infection in plants. Molecular Plant Pathology, 15, 907-917.
Jungkunz I., Link K., Vogel F., Voll L.M., Sonnewald S., Sonnewald U. (2011) AtHsp70-15-deficient Arabidopsis plants are characterized by reduced growth, a constitutive cytosolic protein response and enhanced resistance to TuMV. The Plant Journal, 66, 983-995.
Kogovsek P., Pompe-Novak M., Petek M., Fragner L., Weckwerth W., Gruden K. (2016) Primary metabolism, phenylpropanoids and antioxidant pathways are regulated in potato as a response to Potato virus Y infection. PLOS One, 11, e0146135.
Kozeko L.Y. (2019) The role of HSP90 chaperones in stability and plasticity of ontogenesis of plants under normal and stressful conditions (Arabidopsis thaliana). Cytology and Genetics, 53, 143-161.
Kwon Y., Kabir M.A., Wang H.W., Karuppanapandian T., Monn J.-C., Ryu K.H., Lee G.P., Kim W. (2012) Elimination of Pepper mild mottle virus from infected tobacco (Nicotiana benthamiana L.) plants by callus culture and the sieving technique. Vitro Cellular & Developmental Biology - Plant, 48, 595-599.
Laemmli U.K. (1970) Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature, 227, 680-685.
Lin B.L., Wang J.S., Liu H.C., Chen R.W., Meyer Y., Barakat A., Delseny M. (2001) Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress and Chaperones, 6, 201-208.
Ludwig-Muller J. (2011) Auxin conjugates: their role for plant development and in the evolution of land plants. Journal of Experimental Botany, 62, 1757-1773.
Makarova S., Makhotenko A., Spechenkova N., Love A.J., Kalinina N.O., Taliansky M. (2018) Interactive responses of potato (Solanum tuberosum L.) plants to heat stress and infection with Potato Virus Y. Frontiers in Microbiology, 9, 2582.
Malamy J., Carr J.P., Klessig D.F., Raskin I. (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science, 250, 1002-1004.
Mayer M.P., Bukau B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences, 62, 670-684.
Mine A., Hyodo K., Tajima Y., Kusumanegara K., Taniguchi T., Kaido M., Mise K., Taniguchi H., Okuno T. (2012) Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus. Journal of Virology, 86, 12091-12104.
Muller K., Doubnerova V., Synkova H., Cerovska N., Ryslava H. (2009) Regulation of phosphoenolpyruvate carboxylase in PVYNTN-infected tobacco plants. Biological Chemistry, 390, 245-251.
Nagy P.D., Wang R.Y., Pogany J., Hafren A., Makinen K. (2011) Emerging picture of host chaperone and cyclophilin roles in RNA virus replication. Virology, 411, 374-382.
Park C.J., Seo Y.S. (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. The Plant Pathology Journal, 31, 323-333.
Pogany J., Nagy P.D. (2015) Activation of Tomato bushy stunt virus RNA-dependent RNA polymerase by cellular heat shock protein 70 is enhanced by phospholipids in vitro. Journal of Virology, 89, 5714-5723.
Ryslava H., Holakovská B., Trefancová J., Doubnerova V., Spoustova P., Synkova H., Cerovska N. (2009) The activity of glycosidases in tobacco leaves under stress conditions, 34th Congress of the Federation-of-European-Biochemical-Societies. Prague. FEBS Journal, 276, 24.
Ryslava H., Muller K., Semoradova S., Synkova H., Cerovska N. (2003) Photosynthesis and activity of phosphoenolpyruvate carboxylase in Nicotiana tabacum L. leaves infected by Potato virus A and Potato virus Y. Photosynthetica, 41, 357-363.
Ryslava H., Pomeislova A., Psondrova S., Hyskova V., Smrcek S. (2015) Phytoremediation of carbamazepine and its metabolite 10,11-epoxycarbamazepine by C3 and C4 plants. Environmental Science and Pollution Research, 22, 20271-20282.
Ryslava H., Valenta R., Hyskova V., Krizek T., Liberda J., Coufal P. (2014) Purification and enzymatic characterization of tobacco leaf beta-N-acetylhexosaminidase. Biochimie, 107, 263-269.
Sarkar N.K., Kundnani P., Grover A. (2013) Functional analysis of Hsp70 superfamily proteins of rice (Oryza sativa). Cell Stress and Chaperones, 18, 427-437.
Schmidt G.W., Delaney S.K. (2010) Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress. Molecular Genetics and Genomics, 283, 233-241.
Schnablova R., Synkova H., Vicankova A., Burketova L., Eder J., Cvikrova M. (2006) Transgenic ipt tobacco overproducing cytokinins overaccumulates phenolic compounds during in vitro growth. Plant Physiology and Biochemistry, 44, 526-534.
Sengupta S., Mukherjee S., Basak P., Majumder A.L. (2015) Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Frontiers in Plant Science, 6, 656.
Slamova K., Kapesova J., Valentova K. (2018) "Sweet flavonoids": glycosidase-catalyzed modifications. International Journal of Molecular Sciences, 19, 2126.
Song Z., Pan F., Lou X., Wang D., Yang C., Zhang B., Zhang H. (2019) Genome-wide identification and characterization of Hsp70 gene family in Nicotiana tabacum. Molecular Biology Reports, 46, 1941-1954.
Spoustova P., Hyskova V., Muller K., Schnablova R., Ryslava H., Cerovska N., Malbeck J., Cvikrova M., Synkova H. (2015) Tobacco susceptibility to Potato virus Y-NTN infection is affected by grafting and endogenous cytokinin content. Plant Science, 235, 25-36.
Strasser R. (2016) Plant protein glycosylation. Glycobiology, 26, 926-939.
Su P.H., Li H.M. (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiology, 146, 1231-1241.
Sugio A., Dreos R., Aparicio F., Maule A.J. (2009) The cytosolic protein response as a subcomponent of the wider heat shock response in Arabidopsis. The Plant Cell, 21, 642-654.
Synkova H., Semoradova S., Schnablova R., Muller K., Pospisilova J., Ryslava H., Malbeck J., Cerovska N. (2006) Effects of biotic stress caused by Potato virus Y on photosynthesis in ipt transgenic and control Nicotiana tabacum L. Plant Science, 171, 607-616.
Szittya G., Silhavy D., Molnar A., Havelda Z., Lovas A., Lakatos L., Banfalvi Z., Burgyan J. (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. EMBO Journal, 22, 633-640.
Tamagnone L., Merida A., Stacey N., Plaskitt K., Parr A., Chang C.F., Lynn D., Dow J.M., Roberts K., Martin C. (1998) Inhibition of phenolic acid metabolism results in precocious cell death and altered cell morphology in leaves of transgenic tobacco plants. The Plant Cell, 10, 1801-1816.
Tan R., Wang L., Hong N., Wang G. (2010) Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant, Cell, Tissue and Organ Culture, 101, 229-235.
Usman M.G., Rafii M.Y., Martini M.Y., Yusuff O.A., Ismail M.R., Miah G. (2017) Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnology & Genetic Engineering Reviews, 33, 26-39.
Verchot J. (2012) Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. Frontiers in Plant Science, 3, 275.
Wang W., Vinocur B., Shoseyov O., Altman A. (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in Plant Science, 9, 244-252.
Yang J., Zhang F., Cai N.J., Wu N., Chen X., Li J., Meng X.F., Zhu T.Q., Chen J.P., Zhang H.M. (2017) A furoviral replicase recruits host HSP70 to membranes for viral RNA replication. Scientific Reports, 7, 45590.
Potyviral Helper-Component Protease: Multifaced Functions and Interactions with Host Proteins
Triazoles as a Potential Threat to the Nutritional Quality of Tomato Fruits
Regulation of heat shock proteins 70 and their role in plant immunity