Effect of Agrimonia eupatoria L. and Origanum vulgare L. Leaf, Flower, Stem, and Root Extracts on the Survival of Pseudomonas aeruginosa

. 2023 Jan 19 ; 28 (3) : . [epub] 20230119

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36770686

Grantová podpora
SVV 260572/2022 Charles University

Pseudomonas aeruginosa is one of the most antibiotic multi-resistant bacteria, causing chronic pulmonary disease and leading to respiratory failure and even mortality. Thus, there has been an ever-increasing search for novel and preferably natural antimicrobial compounds. Agrimonia eupatoria L. and Origanum vulgare L. shoots are commonly used as teas or alcoholic tinctures for their human health-promoting and antibacterial properties. Here, we explored the antimicrobial effects of all plant parts, i.e., leaf, flower, stem, and root extracts, prepared in water or in 60% ethanol, against P. aeruginosa. The impact of these extracts on bacterial survival was determined using a luminescent strain of P. aeruginosa, which emits light when alive. In addition, the antimicrobial effects were compared with the antioxidant properties and content of phenolic compounds of plant extracts. Ethanolic extracts of O. vulgare roots and flowers showed the highest antimicrobial activity, followed by A. eupatoria roots. In particular, chlorogenic acid, the ethanolic extract of O. vulgare roots contained high levels of protocatechuic acid, hesperidin, shikimic acid, rutin, quercetin, and morin. The synergistic effects of these phenolic compounds and flavonoids may play a key role in the antibacterial activity of teas and tinctures.

Zobrazit více v PubMed

Álvarez-Martínez F., Barrajón-Catalán E., Herranz-López M., Micol V. Antibacterial plant compounds, extracts and essential oils: An updated review on their effects and putative mechanisms of action. Phytomedicine. 2021;90:153626. doi: 10.1016/j.phymed.2021.153626. PubMed DOI

Kiokias S., Proestos C., Oreopoulou V. Phenolic Acids of Plant Origin—A Review on Their Antioxidant Activity In Vitro (O/W Emulsion Systems) Along with Their in Vivo Health Biochemical Properties. Foods. 2020;9:534. doi: 10.3390/foods9040534. PubMed DOI PMC

Bartwal A., Mall R., Lohani P., Guru S.K., Arora S. Role of Secondary Metabolites and Brassinosteroids in Plant Defense Against Environmental Stresses. J. Plant Growth Regul. 2013;32:216–232. doi: 10.1007/s00344-012-9272-x. DOI

Tupec M., Hýsková V., Bělonožníková K., Hraníček J., Červený V., Ryšlavá H. Characterization of some potential medicinal plants from Central Europe by their antioxidant capacity and the presence of metal elements. Food Biosci. 2017;20:43–50. doi: 10.1016/j.fbio.2017.08.001. DOI

Ghaima K.K. Antibacterial and wound healing activity of some Agrimonia eupatoria extracts. J. Baghdad Sci. 2013;10:152–160.

Pour M.G., Mirazi N., Moradkhani S., Rafieian-Kopaei M., Rahimi-Madiseh M. A comprehensive review on phytochemical, pharmacological and therapeutic properties of Agrimonia eupatoria L. J. Herbmed. Pharmacol. 2021;10:14–30. doi: 10.34172/jhp.2021.02. DOI

Bora L., Avram S., Pavel I.Z., Muntean D., Liga S., Buda V., Gurgus D., Danciu C. An Up-To-Date Review Regarding Cutaneous Benefits of Origanum vulgare L. Essential Oil. Antibiotics. 2022;11:549. doi: 10.3390/antibiotics11050549. PubMed DOI PMC

Soltani S., Shakeri A., Iranshahi M., Boozari M. A Review of the Phytochemistry and Antimicrobial Properties of Origanum vulgare L. and Subspecies. Iran J. Pharm. Res. 2021;20:268–285. doi: 10.22037/IJPR.2020.113874.14539. PubMed DOI PMC

Lombrea A., Antal D., Ardelean F., Avram S., Pavel I.Z., Vlaia L., Mut A.-M., Diaconeasa Z., Dehelean C.A., Soica C., et al. A Recent Insight Regarding the Phytochemistry and Bioactivity of Origanum vulgare L. Essential Oil. Int. J. Mol. Sci. 2020;21:9653. doi: 10.3390/ijms21249653. PubMed DOI PMC

De Mastro G., Tarraf W., Verdini L., Brunetti G., Ruta C. Essential oil diversity of Origanum vulgare L. populations from Southern Italy. Food Chem. 2017;235:1–6. doi: 10.1016/j.foodchem.2017.05.019. PubMed DOI

Fikry S., Khalil N., Salama O. Chemical profiling, biostatic and biocidal dynamics of Origanum vulgare L. essential oil. AMB Express. 2019;9:41. doi: 10.1186/s13568-019-0764-y. PubMed DOI PMC

Feng X.-L., He Y.-B., Liang Y.-Z., Wang Y.-L., Huang L.-F., Xie J.-W. Comparative Analysis of the Volatile Components of Agrimonia eupatoria from Leaves and Roots by Gas Chromatography-Mass Spectrometry and Multivariate Curve Resolution. J. Anal. Methods Chem. 2013;2013:246986. doi: 10.1155/2013/246986. PubMed DOI PMC

Alekseeva M., Zagorcheva T., Atanassov I., Rusanov K. Origanum vulgare L.—A review on genetic diversity, cultivation, biological activities and perspectives for molecular breeding. Bulg. J. Agric. Sci. 2020;26:1183–1197.

Guo X., Hao Y., Zhang W., Xia F., Bai H., Li H., Shi L. Comparison of Origanum Essential Oil Chemical Compounds and Their Antibacterial Activity against Cronobacter sakazakii. Molecules. 2022;27:6702. doi: 10.3390/molecules27196702. PubMed DOI PMC

Scandorieiro S., Rodrigues B.C.D., Nishio E.K., Panagio L.A., de Oliveira A.G., Durán N., Nakazato G., Kobayashi R.K.T. Biogenic Silver Nanoparticles Strategically Combined with Origanum vulgare Derivatives: Antibacterial Mechanism of Action and Effect on Multidrug-Resistant Strains. Front. Microbiol. 2022;13:842600. doi: 10.3389/fmicb.2022.842600. PubMed DOI PMC

Ivanova D., Vankova D., Nashar M. Agrimonia eupatoriatea consumption in relation to markers of inflammation, oxidative status and lipid metabolism in healthy subjects. Arch. Physiol. Biochem. 2013;119:32–37. doi: 10.3109/13813455.2012.729844. PubMed DOI

Cho Y.M., Kwon J.E., Lee M., Lea Y., Jeon D.-Y., Kim H.J., Kang S.C. Agrimonia eupatoria L. (Agrimony) Extract Alters Liver Health in Subjects with Elevated Alanine Transaminase Levels: A Controlled, Randomized, and Double-Blind Trial. J. Med. Food. 2018;21:282–288. doi: 10.1089/jmf.2017.4054. PubMed DOI

Mouro C., Dunne C.P., Gouveia I.C. Designing New Antibacterial Wound Dressings: Development of a Dual Layer Cotton Material Coated with Poly(Vinyl Alcohol)_Chitosan Nanofibers Incorporating Agrimonia eupatoria L. Extract. Molecules. 2020;26:83. doi: 10.3390/molecules26010083. PubMed DOI PMC

Muruzović M., Mladenović K.G., Stefanović O.D., Vasić S.M., Čomić L.R. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J. Food Drug Anal. 2016;24:539–547. doi: 10.1016/j.jfda.2016.02.007. PubMed DOI PMC

Komiazyk M., Palczewska M., Sitkiewicz I., Pikula S., Groves P. Neutralization of cholera toxin by Rosaceae family plant extracts. BMC Complement. Altern. Med. 2019;19:140. doi: 10.1186/s12906-019-2540-6. PubMed DOI PMC

Watkins F., Pendry B., Sanchez-Medina A., Corcoran O. Antimicrobial assays of three native British plants used in Anglo-Saxon medicine for wound healing formulations in 10th century England. J. Ethnopharmacol. 2012;144:408–415. doi: 10.1016/j.jep.2012.09.031. PubMed DOI

Malhotra S., Hayes D., Jr., Wozniak D.J. Cystic Fibrosis and Pseudomonas aeruginosa: The Host-Microbe Interface. Clin. Microbiol. Rev. 2019;32:e00138-18. doi: 10.1128/CMR.00138-18. PubMed DOI PMC

Law N., Logan C., Yung G., Furr C.-L.L., Lehman S.M., Morales S., Rosas F., Gaidamaka A., Bilinsky I., Grint P., et al. Successful adjunctive use of bacteriophage therapy for treatment of multidrug-resistant Pseudomonas aeruginosa infection in a cystic fibrosis patient. Infection. 2019;47:665–668. doi: 10.1007/s15010-019-01319-0. PubMed DOI

Lewenza S., Falsafi R.K., Winsor G., Gooderham W.J., McPhee J.B., Brinkman F.S., Hancock R.E. Construction of a mini-Tn5-luxCDABE mutant library in Pseudomonas aeruginosa PAO1: A tool for identifying differentially regulated genes. Genome Res. 2005;15:583–589. doi: 10.1101/gr.3513905. PubMed DOI PMC

Hilpert K., Hancock R.E.W. Use of luminescent bacteria for rapid screening and characterization of short cationic antimicrobial peptides synthesized on cellulose using peptide array technology. Nat. Protoc. 2007;2:1652–1660. doi: 10.1038/nprot.2007.203. PubMed DOI

Waskom M.L. seaborn: Statistical data visualization. J. Open Source Softw. 2021;6:3021. doi: 10.21105/joss.03021. DOI

Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016;6:71–79. doi: 10.1016/j.jpha.2015.11.005. PubMed DOI PMC

Thorn R.M., Nelson S.M., Greenman J. Use of a bioluminescent Pseudomonas aeruginosa strain within an in vitro microbiological system, as a model of wound infection, to assess the antimicrobial efficacy of wound dressings by monitoring light production. Antimicrob. Agents Chemother. 2007;51:3217–3224. doi: 10.1128/AAC.00302-07. PubMed DOI PMC

Ippolito A., Nigro F. Natural antimicrobials for preserving fresh fruit and vegetables. In: Jongen W., editor. Improving the Safety of Fresh Fruit and Vegetables. Woodhead Publishing; Sawston, UK: 2005. pp. 513–555. DOI

Lu M., Dai T., Murray C.K., Wu M.X. Bactericidal Property of Oregano Oil against Multidrug-Resistant Clinical Isolates. Front. Microbiol. 2018;9:2329. doi: 10.3389/fmicb.2018.02329. PubMed DOI PMC

Elansary H.O., Abdelgaleil S.A.M., Mahmoud E.A., Yessoufou K., Elhindi K., El-Hendawy S. Effective antioxidant, antimicrobial and anticancer activities of essential oils of horticultural aromatic crops in northern Egypt. BMC Complement. Altern. Med. 2018;18:214. doi: 10.1186/s12906-018-2262-1. PubMed DOI PMC

Béjaoui A., Chaabane H., Jemli M., Boulila A., Boussaid M. Essential Oil Composition and Antibacterial Activity of Origanum vulgare subsp. glandulosum Desf. at Different Phenological Stages. J. Med. Food. 2013;16:1115–1120. doi: 10.1089/jmf.2013.0079. PubMed DOI PMC

Zkalp B., Sevgi F., Özcan M., Özcan M.M. The antibacterial activity of essential oil of oregano (Origanum vulgare L.) J. Food Agric. Environ. 2010;8:272–274.

Bouarab-Chibane L., Forquet V., Lantéri P., Clément Y., Léonard-Akkari L., Oulahal N., Degraeve P., Bordes C. Antibacterial Properties of Polyphenols: Characterization and QSAR (Quantitative Structure–Activity Relationship) Models. Front. Microbiol. 2019;10:829. doi: 10.3389/fmicb.2019.00829. PubMed DOI PMC

Negi P.S. Plant extracts for the control of bacterial growth: Efficacy, stability and safety issues for food application. Int. J. Food Microbiol. 2012;156:7–17. doi: 10.1016/j.ijfoodmicro.2012.03.006. PubMed DOI

Naveed M., Hejazi V., Abbas M., Kamboh A.A., Khan G.J., Shumzaid M., Ahmad F., Babazadeh D., FangFang X., Modarresi-Ghazani F., et al. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed. Pharmacother. 2018;97:67–74. doi: 10.1016/j.biopha.2017.10.064. PubMed DOI

Dziedzinski M., Kobus-Cisowska J., Szymanowska D., Stuper-Szablewska K., Baranowska M. Identification of Polyphenols from Coniferous Shoots as Natural Antioxidants and Antimicrobial Compounds. Molecules. 2020;25:3527. doi: 10.3390/molecules25153527. PubMed DOI PMC

Bajko E., Kalinowska M., Borowski P., Siergiejczyk L., Lewandowski W. 5-O-Caffeoylquinic acid: A spectroscopic study and biological screening for antimicrobial activity. LWT-Food Sci. Technol. 2016;65:471–479. doi: 10.1016/j.lwt.2015.08.024. DOI

Fu L., Lu W., Zhou X. Phenolic Compounds and In Vitro Antibacterial and Antioxidant Activities of Three Tropic Fruits: Persimmon, Guava, and Sweetsop. BioMed Res. Int. 2016;2016:4287461. doi: 10.1155/2016/4287461. PubMed DOI PMC

Karunanidhi A., Thomas R., van Belkum A., Neela V. In Vitro Antibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates of Stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole Resistant Strain. BioMed Res. Int. 2013;2013:392058. doi: 10.1155/2013/392058. PubMed DOI PMC

Engels C., Schieber A., Gänzle M.G. Sinapic acid derivatives in defatted Oriental mustard (Brassica juncea L.) seed meal extracts using UHPLC-DAD-ESI-MS n and identification of compounds with antibacterial activity. Eur. Food Res. Technol. 2012;234:535–542. doi: 10.1007/s00217-012-1669-z. DOI

Chen C. Sinapic Acid and Its Derivatives as Medicine in Oxidative Stress-Induced Diseases and Aging. J. Oxid. Med. Cell. Longev. 2016;2016:3571614. doi: 10.1155/2016/3571614. PubMed DOI PMC

Nguyen T.L.A., Bhattacharya D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules. 2022;27:2494. doi: 10.3390/molecules27082494. PubMed DOI PMC

Arima H., Ashida H., Danno G.-I. Rutin-enhanced Antibacterial Activities of Flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci. Biotechnol. Biochem. 2002;66:1009–1014. doi: 10.1271/bbb.66.1009. PubMed DOI

Xie Y., Chen J., Wang B., Peng A.-Y., Mao Z.-W., Xia W. Inhibition of Quorum-Sensing Regulator from Pseudomonas aeruginosa Using a Flavone Derivative. Molecules. 2022;27:2439. doi: 10.3390/molecules27082439. PubMed DOI PMC

Lou Z., Wang H., Rao S., Sun J., Ma C., Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control. 2012;25:550–554. doi: 10.1016/j.foodcont.2011.11.022. DOI

Bai J., Wu Y., Bu Q., Zhong K., Gao H. Comparative study on antibacterial mechanism of shikimic acid and quinic acid against Staphylococcus aureus through transcriptomic and metabolomic approaches. Lwt. 2021;153:112441. doi: 10.1016/j.lwt.2021.112441. DOI

Hýsková V., Bělonožníková K., Šmeringaiová I., Kavan D., Ingr M., Ryšlavá H. How is the activity of shikimate dehydrogenase from the root of Petroselinum crispum (parsley) regulated and which side reactions are catalyzed? Phytochemistry. 2021;190:112881. doi: 10.1016/j.phytochem.2021.112881. PubMed DOI

Ajiboye T.O., Habibu R.S., Saidu K., Haliru F.Z., Ajiboye H.O., Aliyu N.O., Ibitoye O.B., Uwazie J.N., Muritala H.F., Bello S.A., et al. Involvement of oxidative stress in protocatechuic acid-mediated bacterial lethality. Microbiologyopen. 2017;6:e00472. doi: 10.1002/mbo3.472. PubMed DOI PMC

Herald T.J., Gadgil P., Tilley M. High-throughput micro plate assays for screening flavonoid content and DPPH-scavenging activity in sorghum bran and flour. J. Sci. Food Agric. 2012;92:2326–2331. doi: 10.1002/jsfa.5633. PubMed DOI

Agut B., Gamir J., Jacas J.A., Hurtado M., Flors V. Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae. Pest Manag. Sci. 2014;70:1728–1741. doi: 10.1002/ps.3718. PubMed DOI

Hýsková V., Bělonožníková K., Doričová V., Kavan D., Gillarová S., Henke S., Synková H., Ryšlavá H., Čeřovská N. Effects of heat treatment on metabolism of tobacco plants infected with Potato virus Y. Plant Biol. 2021;23:131–141. doi: 10.1111/plb.13234. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...