Oak Leaves as a Raw Material for the Production of Alcoholic Fermented Beverages

. 2024 May 24 ; 13 (11) : . [epub] 20240524

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38890869

This study aimed to point out the possible use of oak leaves (Q. petraea) in the production of fermented alcoholic beverages. Parameters such as antioxidant capacity, total phenolic content, phenolics and sugars were determined using spectrophotometric and chromatographic methods. pH values were also determined, and in the final product with a fermentation length of 85 days, the alcohol content was determined and sensory analysis performed. The antioxidant capacity of the beverage was lower compared to the infusions before fermentation, and its highest values were recorded in the leaf samples, in which the highest values of phenolic compounds and the total phenolic content were also recorded. A decrease in the content of total phenolics was recorded with the increasing length of fermentation in beverage samples. However, the fermentation process had a positive effect on the contents of some phenolic substances such as catechin, gallic acid and gallocatechin. Sensory analysis showed a higher acceptability of the fermented beverage without the addition of orange, which could be caused by the higher sugar content in these samples. Oak leaves therefore represent a suitable raw material for the production of a fermented alcoholic beverage, without the need to enrich the taste with other ingredients.

Zobrazit více v PubMed

Vinha A.F., Barreira J.C.M., Costa A.S.G., Oliveira M.B.P.P. A New Age for Quercus spp. Fruits: Review on Nutritional and Phytochemical Composition and Related Biological Activities of Acorns. Compr. Rev. Food Sci. Food Saf. 2016;15:947–981. doi: 10.1111/1541-4337.12220. PubMed DOI

Tamayo-Tenorio A., Schreuders F.K.G., Zisopoulos F.K., Boom R.M., Van Der Goot A.J. Processing concepts for the use of green leaves as raw materials for the food industry. J. Clean. Prod. 2017;164:736–748. doi: 10.1016/j.jclepro.2017.06.248. DOI

Rocha-Guzmán N.E., Gallegos-Infante J.A., González-Laredo R.F., Reynoso-Camacho R., Ramos-Gómez M., Garcia-Gasca T., Rodríguez-Muñoz M.E., Guzmán-Maldonado S.H., Medina-Torres L., Lujan-García B.A. Antioxidant activity and genotoxic effect on HeLa cells of phenolic compounds from infusions of Quercus resinosa leaves. Food Chem. 2009;115:1320–1325. doi: 10.1016/j.foodchem.2009.01.050. DOI

Sánchez-Burgos J.A., Ramírez-Mares M.V., Larrosa M.M., Gallegos-Infante J.A., González-Laredo R.F., Medina-Torres L., Rocha-Guzmán N.E. Antioxidant, antimicrobial, antitopoisomerase and gastroprotective effect of herbal infusions from four Quercus species. Ind. Crops Prod. 2013;42:57–62. doi: 10.1016/j.indcrop.2012.05.017. DOI

Moreno-Jimenez M.R., Trujillo-Esquivel F., Gallegos-Corona M.A., Reynoso-Camacho R., González-Laredo R.F., Gallegos-Infante J.A., Rocha-Guzmán N.A., Ramos-Gomez M. Antioxidant, anti-inflammatory and anticarcinogenic activities of edible red oak (Quercus spp.) infusions in rat colon carcinogenesis induced by 1,2-dimethylhydrazine. Food Chem. Toxicol. 2015;80:144–153. doi: 10.1016/j.fct.2015.03.011. PubMed DOI

Vázquez-Cabral B.D., Rocha-Guzmán N.E., Gallegos-Infante J.A., González-Herrera S.M., González-Laredo R.F., Moreno-Jiménez M.R., Córdova-Moreno I.T.S. Chemical and sensory evaluation of a functional beverage obtained from infusions of oak leaves (Quercus resinosa) inoculated with the kombucha consortium under different processing conditions. Nutrafoods. 2014;13:169–178. doi: 10.1007/s13749-014-0035-0. DOI

Rocha-Guzmán N.E., González-Laredo R.F., Vázquez-Cabral B.D., Moreno-Jiménez M.R., Gallegos-Infante J.A., Gamboa-Gómez C.I., Flores-Rueda A.G. Functional and Medicinal Beverages: Volume 11: The Science of Beverages. Academic Press; Cambridge, MA, USA: 2019. Oak leaves as a new potential source for functional beverages: Their antioxidant capacity and monomer flavonoid Composition; pp. 381–411.

Vázquez-Cabral B.D., Larrosa-Pérez M., Gallegos-Infante J.A., Moreno-Jiménez M.R., González-Laredo R.F., Rutiaga-Quiñones J.G., Gamboa-Gómez C.I., Rocha-Guzmán N.E. Oak kombucha protects against oxidative stress and inflammatory processes. Chem.-Biol. Interact. 2017;272:1–9. doi: 10.1016/j.cbi.2017.05.001. PubMed DOI

Bhise P., Morya S. The health sustainability of herbal wine bioactives towards different chronic diseases. Pharma Innov. J. 2021;10:512–517. doi: 10.22271/tpi.2021.v10.i5g.6258. DOI

Boondaeng A., Kasemsumran S., Ngowsuwan K., Vaithanomsat P., Apiwatanapiwat W., Trakunjae C., Janchai P., Jungtheerapanich S., Niyomvong N. Fermentation Condition and Quality Evaluation of Pineapple Fruit Wine. Fermentation. 2021;8:11. doi: 10.3390/fermentation8010011. DOI

Thakur R. Herbal wine preparation from agricultural wastes. J. Curr. Res. Food Sci. 2020;1:52–55.

Deshmukh S.A. herbal wine production from fruits and vegetable wastes and peels. Int. J. Eng. Appl. Sci. Technol. 2021;5:129–133. doi: 10.33564/IJEAST.2021.v05i09.019. DOI

Abdullah F.A.A., Dordevic D., Kabourkova E., Zemancová J., Dordevic S. Antioxidant and Sensorial Properties: Meat Analogues versus Conventional Meat Products. Processes. 2022;10:1864. doi: 10.3390/pr10091864. DOI

Dordevic D., Dordevic S., Ćavar-zeljković S., Kulawik P., Kushkevych I., Tremlová B., Kalová V. Monitoring the quality of fortified cold-pressed rapeseed oil in different storage conditions. Eur. Food Res. Technol. 2022;248:2695–2705. doi: 10.1007/s00217-022-04079-8. DOI

Abdelhakim L.O.A., Mendanha T., Palma C.F.F., Vrobel O., Štefelová N., Ćavar Zeljković S., TarkowskI P., de Diego N., Wollenweber B., Rosenqvist E., et al. Elevated CO2 Improves the Physiology but Not the Final Yield in Spring Wheat Genotypes Subjected to Heat and Drought Stress during Anthesis. Front. Plant Sci. 2022;13:824476. doi: 10.3389/fpls.2022.824476. PubMed DOI PMC

Ćavar Zeljković S., Komzáková K., Šišková J., Karalija E., Smekalova K., Tarkowski P. Phytochemical variability of selected basil genotypes. Ind. Crops Prod. 2020;157:112910. doi: 10.1016/j.indcrop.2020.112910. DOI

Dordevic D., Kalcakova L., Zackova A., Ćavar Zeljković S., Dordevic S., Tremlova B. Comparison of Conventional and Organic Wines Produced in Kutnohorsk Region (Czech Republic) Fermentation. 2023;9:832. doi: 10.3390/fermentation9090832. DOI

Panda S.K., Swain M.R., Singh S., Ray R.C. Proximate compositions of a herbal purple sweet potato (Ipomoea batatas L.) wine. J. Food Process. Preserv. 2012;37:596–604. doi: 10.1111/j.1745-4549.2012.00681.x. DOI

Lan Y., Wu J., Wang X., Sun X., Hackman R.M., Li Z., Feng X. Evaluation of antioxidant capacity and flavor profile change of pomegranate wine during fermentation and aging process. Food Chem. 2017;232:777–787. doi: 10.1016/j.foodchem.2017.04.030. PubMed DOI

Kallithraka S., Salacha M.I., Tzourou I. Changes in phenolic composition and antioxidant activity of white wine during bottle storage: Accelerated browning test versus bottle storage. Food Chem. 2009;113:500–505. doi: 10.1016/j.foodchem.2008.07.083. DOI

Tabart J., Kevers C., Pincemail J., Defraigne J.O., Dommes J. Comparative antioxidant capacities of phenolic compounds measured by various tests. Food Chem. 2009;113:1226–1233. doi: 10.1016/j.foodchem.2008.08.013. DOI

Suna S., Çiftçi K., Tamer C.E. Determination of physicochemical and sensory properties of kombucha beverage prepared with saffron. J. Food. 2020;45:20–30.

Popović B.M., Štajner D., Ždero R., Orlović S., Galić Z. Antioxidant Characterization of Oak Extracts Combining Spectrophotometric Assays and Chemometrics. Sci. World J. 2013;2013:134656. doi: 10.1155/2013/134656. PubMed DOI PMC

Custódio L., Patarra J., Alberício F., Neng N.D.R., Nogueira J.M.F., Romano A. Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer’s disease. Ind. Crops Prod. 2015;64:45–51. doi: 10.1016/j.indcrop.2014.11.001. DOI

Ling J., Sam J.H., Jeevanandam J., Chan Y.S.S., Nandong J. Thermal Degradation of Antioxidant Compounds: Effects of Parameters, Thermal Degradation Kinetics, and Formulation Strategies. Food Bioprocess Technol. 2022;15:1919–1935. doi: 10.1007/s11947-022-02797-1. DOI

Antony A., Farid M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022;12:2107. doi: 10.3390/app12042107. DOI

Székelyhidi R., Lakatos E., Sik B., Nagy A., Varga L., Molnár Z., Kapcsándi V. The beneficial effect of peppermint (Mentha X Piperita L.) and lemongrass (Melissa officinalis L.) dosage on total antioxidant and polyphenol content during alcoholic fermentation. Food Chem. 2022;13:100226. doi: 10.1016/j.fochx.2022.100226. PubMed DOI PMC

Salmon J.-M. Interactions between yeast, oxygen and polyphenols during alcoholic fermentations: Practical implications. LWT—Food Sci. Technol. 2006;39:959–965. doi: 10.1016/j.lwt.2005.11.005. DOI

García-Villalba R., Espín J.S., Tomás-Barberán F.A., Rocha-Guzmán N.E. Comprehensive characterization by LC-DAD-MS/MS of the phenolic composition of seven Quercus leaf teas. J. Food Compos. Anal. 2017;63:38–46. doi: 10.1016/j.jfca.2017.07.034. DOI

Rocha-Guzmán N.E., Medina-Medrano J.R., Gallegos-Infante J.A., Gonzalez-Laredo R.F., Ramos-Gómez M., Reynoso-Camacho R., Guzmán-Maldonado H., González-Herrera S.M. Chemical Evaluation, Antioxidant Capacity, and Consumer Acceptance of Several Oak Infusions. J. Food Sci. 2012;77:162–166. doi: 10.1111/j.1750-3841.2011.02524.x. PubMed DOI

Gallegos-Infante J.A., Rocha-Guzmán N.E., González-Laredo R.F., Medina-Torres L., Gomez-Aldapa C.A., Ochoa-Martínez L.A., Martıínez-Saánchez C.E., Hernaández-Santos B., Rodríguez-Ramírez J. Physicochemical properties and antioxidant capacity of oak (Quercus resinosa) leaf infusions encapsulated by spray-drying. Food Biosci. 2013;2:31–38. doi: 10.1016/j.fbio.2013.03.009. DOI

Salehi B., Fokou P.V.T., Sharifi-Rad M., Zucca P., Pezzani R., Martins N., Sharifi-Rad J. The Therapeutic Potential of Naringenin: A Review of Clinical Trials. Pharmaceuticals. 2019;12:11. doi: 10.3390/ph12010011. PubMed DOI PMC

Wei K., Wang L., Zhou J., He W., Zeng J., Jiang Y., Cheng H. Catechin contents in tea (Camellia sinensis) as affected by cultivar and environment and their relation to chlorophyll contents. Food Chem. 2011;125:44–48. doi: 10.1016/j.foodchem.2010.08.029. DOI

Ross C.F., Hoye C., Jr., Fernandez-Plotka V.C. Influence of Heating on the Polyphenolic Content and Antioxidant Activity of Grape Seed Flour. J. Food Sci. 2011;76:884–890. doi: 10.1111/j.1750-3841.2011.02280.x. PubMed DOI

Vahl K., Kahlert H., Mühlen L.V., Albrecht A., Meyer G., Behnert J. Determination of the titratable acidity and the pH of wine based on potentiometric flow injection analysis. Talanta. 2013;111:134–139. doi: 10.1016/j.talanta.2013.02.057. PubMed DOI

Gamboa-Gómez C.I., Simental-Mendía L.E., González-Laredo R.F., Alcantar-Orozco E.J., Monserrat-Juarez V.H., Ramírez-España J.C., Gallegos-Infante J.A., Moreno-Jiménez M.R., Rocha-Guzmán N.E. In vitro and in vivo assessment of anti-hyperglycemic and antioxidant effects of Oak leaves (Quercus convallata and Quercus arizonica) infusions and fermented beverages. Food Res. Int. 2017;102:690–699. doi: 10.1016/j.foodres.2017.09.040. PubMed DOI

Zeng l., Ma M., Li C., Luo L. Stability of tea polyphenols solution with different pH at different temperatures. Int. J. Food Prop. 2017;20:1–18. doi: 10.1080/10942912.2014.983605. DOI

Forino M., Picariello L., Rinaldi A., Moio L., Gambuti A. How must pH affects the level of red wine phenols. LWT—Food Sci. Technol. 2022;129:109546. doi: 10.1016/j.lwt.2020.109546. DOI

Waterhouse A.L., Laurie V.F. Oxidation of Wine Phenolics: A Critical Evaluation and Hypotheses. Am. J. Enol. Vitic. 2005;57:306–313. doi: 10.5344/ajev.2006.57.3.306. DOI

Gawel R., Smith P.A., Waters E.J. Influence of polysaccharides on the taste and mouthfeel of white wine. Aust. J. Grape Wine Res. 2016;22:350–357. doi: 10.1111/ajgw.12222. DOI

Berthels N.J., Otero R.R.O., Bauer F.F., Thevelein J.M., Pretorius I.S. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. FEMS Yeast Res. 2004;4:683–689. doi: 10.1016/j.femsyr.2004.02.005. PubMed DOI

Coelho E.M., da Silva Padilha C.V., Miskinis G.A., de Sá A.G.B., Pereira G.E., de Azevêdo L.C., dos Santos Lima M. Simultaneous analysis of sugars and organic acids in wine and grape juices by HPLC: Method validation and characterization of products from northeast Brazil. J. Food Compos. Anal. 2018;66:160–167. doi: 10.1016/j.jfca.2017.12.017. DOI

King E.S., Dunn R.L., Heymann H. The influence of alcohol on the sensory perception of red wines. Food Qual. Prefer. 2013;28:235–243. doi: 10.1016/j.foodqual.2012.08.013. DOI

Contreras A., Hidalgo C., Henschke P.A., Chambers P.J., Curtin C., Varela C. Evaluation of Non-Saccharomyces Yeasts for the Reduction of Alcohol Content in Wine. Am. Soc. Microbiol. 2013;80:1670–1678. doi: 10.1128/AEM.03780-13. PubMed DOI PMC

Rana A., Singh H.P. Bio-utilization of wild berries for preparation of high valued herbal wines. Indian J. Nat. Prod. Resour. 2013;4:165–169.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace