Protection of nitrogenase from photosynthetic O2 evolution in Trichodesmium: methodological pitfalls and advances over 30 years of research

. 2023 ; 61 (1) : 58-72. [epub] 20230313

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39650126

The Trichodesmium genus comprises some of the most abundant N2-fixing organisms in oligotrophic marine ecosystems. Since nitrogenase, the key enzyme for N2 fixation, is irreversibly inhibited upon O2 exposure, these organisms have to coordinate their N2-fixing ability with simultaneous photosynthetic O2 production. Although being the principal object of many laboratory and field studies, the overall process of how Trichodesmium reconciles these two mutually exclusive processes remains unresolved. This is in part due to contradictory results that fuel the Trichodesmium enigma. In this review, we sift through methodological details that could potentially explain the discrepancy between findings related to Trichodesmium's physiology. In doing so, we exhaustively contrast studies concerning both spatial and temporal nitrogenase protective strategies, with particular attention to more recent insights. Finally, we suggest new experimental approaches for solving the complex orchestration of N2 fixation and photosynthesis in Trichodesmium.

Zobrazit více v PubMed

Alboresi A., Storti M., Cendron L., Morosinotto T.: Role and regulation of class-C flavodiiron proteins in photosynthetic organisms. – Biochem. J. 476: 2487-2498, 2019. 10.1042/BCJ20180648 PubMed DOI

Allahverdiyeva Y., Isojärvi J., Zhang P., Aro E.-M.: Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. – Life 5: 716-743, 2015. 10.3390/life5010716 PubMed DOI PMC

Allahverdiyeva Y., Mustila H., Ermakova M. et al. : Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. – P. Natl. Acad. Sci. USA 110: 4111-4116, 2013. 10.1073/pnas.1221194110 PubMed DOI PMC

Andresen E., Lohscheider J., Šetlikova E. et al. : Acclimation of PubMed DOI

Badger M.R., Price G.D., Long B.M., Woodger F.J.: The environmental plasticity and ecological genomics of the cyanobacterial CO PubMed DOI

Belin B.J., Busset N., Giraud E. et al. : Hopanoid lipids: from membranes to plant-bacteria interactions. – Nat. Rev. Microbiol. 16: 304-315, 2018. 10.1038/nrmicro.2017.173 PubMed DOI PMC

Benavides M., Agawin N.S.R., Arístegui J. et al. : Nitrogen fixation by DOI

Benavides M., Berthelot H., Duhamel S. et al. : Dissolved organic matter uptake by PubMed DOI PMC

Benavides M., Bonnet S., Le Moigne F.A.C. et al. : Sinking PubMed DOI PMC

Benavides M., Moisander P.H., Daley M.C. et al. : Longitudinal variability of diazotroph abundances in the subtropical North Atlantic Ocean. – J. Plankton Res. 38: 662-672, 2016. 10.1093/plankt/fbv121 DOI

Bergman B., Carpenter E.J.: Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium DOI

Bergman B., Gallon J.R., Rai A.N., Stal L.J.: N DOI

Bergman B., Siddiqui P.J.A., Carpenter E.J., Peschek G.A.: Cytochrome oxidase: Subcellular distribution and relationship to nitrogenase expression in the nonheterocystous marine cyanobacterium PubMed DOI PMC

Berman-Frank I., Cullen J.T., Shaked Y. et al. : Iron availability, cellular iron quotas, and nitrogen fixation in DOI

Berman-Frank I., Lundgren P., Chen Y.B. et al. : Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium PubMed DOI

Berman-Frank I., Lundgren P., Falkowski P.G.: Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. – Res. Microbiol. 154: 157-164, 2003. 10.1016/S0923-2508(03)00029-9 PubMed DOI

Berman-Frank I., Quigg A., Finkel Z.V. et al. : Nitrogen-fixation strategies and Fe requirements in cyanobacteria. – Limnol. Oceanogr. 52: 2260-2269, 2007. 10.4319/lo.2007.52.5.2260 DOI

Berthelot H., Bonnet S., Grosso O. et al. : Transfer of diazotroph-derived nitrogen towards non-diazotrophic planktonic communities: a comparative study between DOI

Boatman T.G., Davey P.A., Lawson T., Geider R.J.: CO PubMed DOI PMC

Bonnet S., Berthelot H., Turk-Kubo K. et al. : Diazotroph derived nitrogen supports diatom growth in the South West Pacific: A quantitative study using nanoSIMS. – Limnol. Oceanogr. 61: 1549-1562, 2016. 10.1002/lno.10300 DOI

Boyd E.S., Peters J.W.: New insights into the evolutionary history of biological nitrogen fixation. – Front. Microbiol. 4: 201, 2013. 10.3389/fmicb.2013.00201 PubMed DOI PMC

Bristow L.A., Mohr W., Ahmerkamp S., Kuypers M.M.M.: Nutrients that limit growth in the ocean. – Curr. Biol. 27: R474-R478, 2017. 10.1016/j.cub.2017.03.030 PubMed DOI

Capone D.G., Burns J.A., Montoya J.P. et al. : Nitrogen fixation by DOI

Capone D.G., Knapp A.N.: A marine nitrogen cycle fix? – Nature 445: 159-160, 2007. 10.1038/445159a PubMed DOI

Capone D.G., O'Neil J.M., Zehr J., Carpenter E.J.: Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium PubMed DOI PMC

Capone D.G., Zehr J.P., Paerl H.W. et al. : DOI

Carpenter E.J., Bergman B., Dawson R. et al. : Glutamine synthetase and nitrogen cycling in colonies of the marine diazotrophic cyanobacteria PubMed DOI PMC

Carpenter E.J., Capone D.G.: Nitrogen fixation in the marine environment. – In: Capone D.G., Bronk D.A., Mulholland M.R., Carpenter E.J. (ed.): Nitrogen in the Marine Environment. 2 DOI

Carpenter E.J., Chang J., Cottrell M. et al. : Re-evaluation of nitrogenase oxygen-protective mechanisms in the planktonic marine cyanobacterium

Chen C.-C., Rodriguez I.B., Chen Y.-L.L. et al. : Nickel superoxide dismutase protects nitrogen fixation in DOI

Chen Y.-B., Dominic B., Mellon M.T., Zehr J.P.: Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium PubMed DOI PMC

Chen Y.-B., Zehr J.P., Mellon M.T.: Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium DOI

Coles V.J., Hood R.R., Pascual M., Capone D.G.: Modeling the impact of DOI

Cornejo-Castillo F.M., Zehr J.P.: Hopanoid lipids may facilitate aerobic nitrogen fixation in the ocean. – P. Natl. Acad. Sci. USA 116: 18269-18271, 2019. 10.1073/pnas.1908165116 PubMed DOI PMC

Delmont T.O.: Environmental genomics points to non-diazotrophic PubMed DOI PMC

Dugdale R.C., Menzel D.W., Ryther J.H.: Nitrogen fixation in the Sargasso Sea. – Deep Sea Res. 7: 297-300, 1961. 10.1016/0146-6313(61)90051-X DOI

Dupont C.L., Barbeau K., Palenik B.: Ni uptake and limitation in marine PubMed DOI PMC

Eichner M., Klawonn I., Wilson S.T. et al. : Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of PubMed DOI PMC

Eichner M., Kranz S.A., Rost B.: Combined effects of different CO PubMed DOI PMC

Eichner M., Thoms S., Rost B. et al. : N PubMed DOI PMC

Eisenhut M., Ruth W., Haimovich M. et al. : The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. – P. Natl. Acad. Sci. USA 105: 17199-17204, 2008. 10.1073/pnas.0807043105 PubMed DOI PMC

El-Shehawy R., Lugomela C., Ernst A., Bergman B.: Diurnal expression of PubMed DOI

Falkowski P.G.: Evolution of the nitrogen cycle and its influence on the biological sequestration of CO DOI

Falkowski P.G., Raven J.A.: Aquatic Photosynthesis. 2

Fay P.: Oxygen relations of nitrogen-fixation in cyanobacteria. – Microbiol. Rev. 56: 340-373, 1992. 10.1128/mr.56.2.340-373.1992 PubMed DOI PMC

Finzi-Hart J.A., Pett-Ridge J., Weber P.K. et al. : Fixation and fate of C and N in the cyanobacterium PubMed DOI PMC

Fredriksson C., Bergman B.: Nitrogenase quantity varies diurnally in a subset of cells within colonies of the non-heterocystous cyanobacteria DOI

Fredriksson C., Bergman B.: Ultrastructural characterisation of cells specialised for nitrogen fixation in a non-heterocystous cyanobacterium, DOI

Gallon J.R.: The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. – Trends Biochem. Sci. 6: 19-23, 1981. 10.1016/0968-0004(81)90008-6 DOI

Gardner J.J., Hodge B.-M.S., Boyle N.R.: Investigating the unique ability of PubMed DOI PMC

Giordano M., Beardall J., Raven J.A.: CO PubMed DOI

Golden J.W., Yoon H.-S.: Heterocyst development in PubMed DOI

Großkopf T., LaRoche J.: Direct and indirect costs of dinitrogen fixation in PubMed DOI PMC

Gruber N.: A bigger nitrogen fix. – Nature 436: 786-787, 2005. 10.1038/436786a PubMed DOI

Held N.A., Sutherland K.M., Webb E.A. et al. : Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer PubMed DOI PMC

Held N.A., Waterbury J.B., Webb E.A. et al. : Dynamic diel proteome and daytime nitrogenase activity supports buoyancy in the cyanobacterium PubMed DOI PMC

Helman Y., Tchernov D., Reinhold L. et al. : Genes encoding A-type flavoproteins are essential for photoreduction of O PubMed DOI

Herrmann A.M., Ritz K., Nunan N. et al. : Nano-scale secondary ion mass spectrometry – A new analytical tool in biogeochemistry and soil ecology: A review article. – Soil Biol. Biochem. 39: 1835-1850, 2007. 10.1016/j.soilbio.2007.03.011 DOI

Ho T.-Y.: Nickel limitation of nitrogen fixation in DOI

Ho T.-Y., Chu T.-H., Hu C.-L.: Interrelated influence of light and Ni on PubMed DOI PMC

Hynes A.M., Webb E.A., Doney S.C., Waterbury J.B.: Comparison of cultured PubMed DOI

Inomura K., Wilson S.T., Deutsch C.: Mechanistic model for the coexistence of nitrogen fixation and photosynthesis in marine PubMed DOI PMC

Janson S., Carpenter E.J., Bergman B.: Compartmentalisation of nitrogenase in a non-heterocystous cyanobacterium: DOI

Kana T.M.: Rapid oxygen cycling in DOI

Kelman D., Ben-Amotz A., Berman-Frank I.: Carotenoids provide the major antioxidant defence in the globally significant N PubMed DOI

Kranz S.A., Dieter S., Richter K.-U., Rost B.: Carbon acquisition by DOI

Kranz S.A., Eichner M., Rost B.: Interactions between CCM and N PubMed DOI

Kranz S.A., Levitan O., Richter K.-U. et al. : Combined effects of CO PubMed DOI PMC

Kumar K., Mella-Herrera R.A., Golden J.W.: Cyanobacterial heterocysts. – Cold Spring Harb. Perspect. Biol. 2: a000315, 2010. 10.1101/cshperspect.a000315 PubMed DOI PMC

Küpper H., Andresen E., Wiegert S. et al. : Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium PubMed DOI

Küpper H., Ferimazova N., Šetlík I., Berman-Frank I.: Traffic lights in PubMed DOI PMC

Küpper H., Šetlík I., Seibert S. et al. : Iron limitation in the marine cyanobacterium PubMed DOI

Küpper H., Šetlík I., Trílek M., Nebdal L.: A microscope for two-dimensional measurements of DOI

Langlois R.J., Hümmer D., LaRoche J.: Abundances and distributions of the dominant PubMed DOI PMC

Levitan O., Brown C.M., Sudhaus S. et al. : Regulation of nitrogen metabolism in the marine diazotroph PubMed DOI

Levitan O., Kranz S.A., Spungin D. et al. : Combined effects of CO PubMed DOI PMC

Levitan O., Rosenberg G., Setlik I. et al. : Elevated CO DOI

Lin S., Henze S., Lundgren P. et al. : Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, PubMed DOI PMC

Lundgren P., Janson S., Jonasson S. et al. : Unveiling of novel radiations within PubMed DOI PMC

Lundgren P., Soderback E., Singer A. et al. : DOI

Luo W., Inomura K., Zhang H., Luoa Y.-W.: N PubMed DOI PMC

Mahaffey C., Michaels A.F., Capone D.G.: The conundrum of marine N DOI

Mareš J., Strunecký O., Bučinská L., Wiedermannová J.: Evolutionary patterns of thylakoid architecture in cyanobacteria. – Front. Microbiol. 10: 277, 2019. 10.3389/fmicb.2019.00277 PubMed DOI PMC

Martínez-Pérez C., Mohr W., Löscher C.R. et al. : The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. – Nat. Microbiol. 1: 16163, 2016. 10.1038/nmicrobiol.2016.163 PubMed DOI

Middag R., de Baar H.J.W., Bruland K.W., van Heuven S.M.A.C.: The distribution of nickel in the West-Atlantic Ocean, its relationship with phosphate and a comparison to cadmium and zinc. – Front. Mar. Sci. 7: 105, 2020. 10.3389/fmars.2020.00105 DOI

Milligan A.J., Berman-Frank I., Gerchman Y. et al. : Light-dependent oxygen consumption in nitrogen-fixing cyanobacteria plays a key role in nitrogenase protection. – J. Phycol. 43: 845-852, 2007. 10.1111/j.1529-8817.2007.00395.x DOI

Mulholland M.R., Bronk D.A., Capone D.G.: Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by DOI

Mulholland M.R., Capone D.G.: Dinitrogen fixation in the Indian Ocean. – In: Wiggert J.D., Hood R.R., Naqvi S.W.A. et al. (ed): Indian Ocean Biogeochemical Processes and Ecological Variability. Pp 167-186. American Geophysical Union, Washington: 2009. 10.1029/2009GM000850 DOI

Mulholland M.R., Lomas M.W.: Nitrogen uptake and assimilation. – In: Capone D.G., Bronk D.A., Mulholland M.R., Carpenter E.J. (ed.): Nitrogen in the Marine Environment. 2 DOI

Mullineaux C.W., Mariscal V., Nenninger A. et al. : Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. – EMBO J. 27: 1299-1308, 2008. 10.1038/emboj.2008.66 PubMed DOI PMC

Mustila H., Paananen P., Battchikova N. et al. : The flavodiiron protein Flv3 functions as a homo-oligomer during stress acclimation and is distinct from the Flv1/Flv3 hetero-oligomer specific to the O PubMed DOI PMC

Nikkanen L., Solymosi D., Jokel M., Allahverdiyeva Y.: Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. – Physiol. Plantarum 173: 514-525, 2021. 10.1111/ppl.13404 PubMed DOI

Ohki K.: Intercellular localization of nitrogenase in a non-heterocystous cyanobacterium (Cyanophyte), DOI

Ohki K., Fujita Y.: Laboratory culture of the pelagic blue-green alga

Ohki K., Fujita Y.: Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium DOI

Ohki K., Taniuchi Y.: Detection of nitrogenase in individual cells of a natural population of DOI

Orcutt K.M., Rasmussen U., Webb E.A. et al. : Characterization of PubMed DOI PMC

Orcutt K.M., Ren S., Gundersen K.: Detecting proteins in highly autofluorescent cells using quantum dot antibody conjugates. – Sensors-Basel 9: 7540-7549, 2009. 10.3390/s90907540 PubMed DOI PMC

Paerl H.W., Bebout B.M.: Direct measurement of O PubMed

Paerl H.W., Priscu J.C., Brawner D.L.: Immunochemical localization of nitrogenase in marine PubMed DOI PMC

Pajares S., Ramos R.: Processes and microorganisms involved in the marine nitrogen cycle: Knowledge and gaps. – Front. Mar. Sci. 6: 739, 2019. 10.3389/fmars.2019.00739 DOI

Pierella Karlusich J.J., Pelletier E., Lombard F. et al. : Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. – Nat. Commun. 12: 4160, 2021. 10.1038/s41467-021-24299-y PubMed DOI PMC

Poger D., Mark A.E.: The relative effect of sterols and hopanoids on lipid bilayers: When comparable is not identical. – J. Phys. Chem. B 117: 16129-16140, 2013. 10.1021/jp409748d PubMed DOI

Postgate J.R.: Nitrogen Fixation. 3

Prufert-Bebout L., Paerl H.W., Lassen C.: Growth, nitrogen fixation, and spectral attenuation in cultivated PubMed DOI PMC

Rascio N., La Rocca N.: Biological nitrogen fixation. – In: Elias S.A. (ed.): Reference Module in Earth Systems and Environmental Sciences. Pp. 412-419. Elsevier, Amsterdam: 2013.

Robson R.L., Postgate J.R.: Oxygen and hydrogen in biological nitrogen fixation. – Annu. Rev. Microbiol. 34: 183-207, 1980. 10.1146/annurev.mi.34.100180.001151 PubMed DOI

Rodriguez I.B., Ho T.-Y.: Diel nitrogen fixation pattern of PubMed DOI PMC

Rodriguez I.B., Ho T.-Y.: Interactive effects of spectral quality and trace metal availability on the growth of PubMed DOI PMC

Sandh G., El-Shehawy R., Díez B., Bergman B.: Temporal separation of cell division and diazotrophy in the marine diazotrophic cyanobacterium PubMed DOI

Sandh G., Ran L., Xu L. et al. : Comparative proteomic profiles of the marine cyanobacterium PubMed DOI

Sandh G., Xu L., Bergman B.: Diazocyte development in the marine diazotrophic cyanobacterium PubMed DOI

Schlesier J., Rohde M., Gerhardt S., Einsle O.: A conformational switch triggers nitrogenase protection from oxygen damage by Shethna protein II (FeSII). – J. Am. Chem. Soc. 138: 239-247, 2016. 10.1021/jacs.5b10341 PubMed DOI

Schneegurt M.A., Sherman D.M., Nayar S., Sherman L.A.: Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium PubMed DOI PMC

Seefeldt L.C., Yang Z.-Y., Lukoyanov D.A. et al. : Reduction of substrates by nitrogenases. – Chem. Rev. 120: 5082-5106, 2020. 10.1021/acs.chemrev.9b00556 PubMed DOI PMC

Siddiqui P.J.A., Carpenter E.J., Bergman B.: Ultrastructure and immunolocalization of phycobiliproteins and ribulose-1,5-bisphosphate carboxylase/oxygenase in the marine cyanobacterium DOI

Tamagnini P., Axelsson R., Lindberg P. et al. : Hydrogenases and hydrogen metabolism of cyanobacteria. – Microbiol. Mol. Biol. Rev. 66: 1-20, 2002. 10.1128/MMBR.66.1.1-20.2002 PubMed DOI PMC

Taniuchi Y., Murakami A., Ohki K.: Whole-cell immunocytochemical detection of nitrogenase in cyanobacteria: improved protocol for highly fluorescent cells. – Aquat. Microb. Ecol. 51: 237-247, 2008. 10.3354/ame01197 DOI

Tyrrell T., Marañon E., Poulton A.J. et al. : Large-scale latitudinal distribution of DOI

Weiss G.L., Kieninger A.-K., Maldener I. et al. : Structure and function of a bacterial gap junction analog. – Cell 178: 374-384, 2019. 10.1016/j.cell.2019.05.055 PubMed DOI PMC

Westberry T.K., Siegel D.A.: Spatial and temporal distribution of DOI

Zehr J.P., Capone D.G.: Changing perspectives in marine nitrogen fixation. – Science 368: eaay9514, 2020. https://www.science.org/doi/10.1126/science.aay9514 PubMed DOI

Zehr J.P., Wyman M., Miller V. et al. : Modification of the Fe protein of nitrogenase in natural populations of PubMed DOI PMC

Zhang P., Allahverdiyeva Y., Eisenhut M., Aro E.-M.: Flavodiiron proteins in oxygenic photosynthetic organisms: Photoprotection of photosystem II by Flv2 and Flv4 in PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...