Protection of nitrogenase from photosynthetic O2 evolution in Trichodesmium: methodological pitfalls and advances over 30 years of research

. 2023 ; 61 (1) : 58-72. [epub] 20230313

Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39650126

The Trichodesmium genus comprises some of the most abundant N2-fixing organisms in oligotrophic marine ecosystems. Since nitrogenase, the key enzyme for N2 fixation, is irreversibly inhibited upon O2 exposure, these organisms have to coordinate their N2-fixing ability with simultaneous photosynthetic O2 production. Although being the principal object of many laboratory and field studies, the overall process of how Trichodesmium reconciles these two mutually exclusive processes remains unresolved. This is in part due to contradictory results that fuel the Trichodesmium enigma. In this review, we sift through methodological details that could potentially explain the discrepancy between findings related to Trichodesmium's physiology. In doing so, we exhaustively contrast studies concerning both spatial and temporal nitrogenase protective strategies, with particular attention to more recent insights. Finally, we suggest new experimental approaches for solving the complex orchestration of N2 fixation and photosynthesis in Trichodesmium.

Zobrazit více v PubMed

Alboresi A., Storti M., Cendron L., Morosinotto T.: Role and regulation of class-C flavodiiron proteins in photosynthetic organisms. – Biochem. J. 476: 2487-2498, 2019. 10.1042/BCJ20180648 PubMed DOI

Allahverdiyeva Y., Isojärvi J., Zhang P., Aro E.-M.: Cyanobacterial oxygenic photosynthesis is protected by flavodiiron proteins. – Life 5: 716-743, 2015. 10.3390/life5010716 PubMed DOI PMC

Allahverdiyeva Y., Mustila H., Ermakova M. et al.: Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. – P. Natl. Acad. Sci. USA 110: 4111-4116, 2013. 10.1073/pnas.1221194110 PubMed DOI PMC

Andresen E., Lohscheider J., Šetlikova E. et al.: Acclimation of Trichodesmium erythraeum ISM101 to high and low irradiance analysed on the physiological, biophysical and biochemical level. – New Phytol. 185: 173-188, 2010. 10.1111/j.1469-8137.2009.03068.x PubMed DOI

Badger M.R., Price G.D., Long B.M., Woodger F.J.: The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. – J. Exp. Bot. 57: 249-265, 2006. 10.1093/jxb/eri286 PubMed DOI

Belin B.J., Busset N., Giraud E. et al.: Hopanoid lipids: from membranes to plant-bacteria interactions. – Nat. Rev. Microbiol. 16: 304-315, 2018. 10.1038/nrmicro.2017.173 PubMed DOI PMC

Benavides M., Agawin N.S.R., Arístegui J. et al.: Nitrogen fixation by Trichodesmium and small diazotrophs in the subtropical northeast Atlantic. – Aquat. Microb. Ecol. 65: 43-53, 2011. 10.3354/ame01534 DOI

Benavides M., Berthelot H., Duhamel S. et al.: Dissolved organic matter uptake by Trichodesmium in the Southwest Pacific. – Sci. Rep.-UK 7: 41315, 2017. 10.1038/srep41315 PubMed DOI PMC

Benavides M., Bonnet S., Le Moigne F.A.C. et al.: Sinking Trichodesmium fixes nitrogen in the dark ocean. – ISME J. 16: 2398-2405, 2022. 10.1038/s41396-022-01289-6 PubMed DOI PMC

Benavides M., Moisander P.H., Daley M.C. et al.: Longitudinal variability of diazotroph abundances in the subtropical North Atlantic Ocean. – J. Plankton Res. 38: 662-672, 2016. 10.1093/plankt/fbv121 DOI

Bergman B., Carpenter E.J.: Nitrogenase confined to randomly distributed trichomes in the marine cyanobacterium Trichodesmium thiebautii. – J. Phycol. 27: 158-165, 1991. 10.1111/j.0022-3646.1991.00158.x DOI

Bergman B., Gallon J.R., Rai A.N., Stal L.J.: N2 fixation by non-heterocystous cyanobacteria. – FEMS Microbiol. Rev. 19: 139-185, 1997. 10.1111/j.1574-6976.1997.tb00296.x DOI

Bergman B., Siddiqui P.J.A., Carpenter E.J., Peschek G.A.: Cytochrome oxidase: Subcellular distribution and relationship to nitrogenase expression in the nonheterocystous marine cyanobacterium Trichodesmium thiebautii. – Appl. Environ. Microb. 59: 3239-3244, 1993. 10.1128/aem.59.10.3239-3244.1993 PubMed DOI PMC

Berman-Frank I., Cullen J.T., Shaked Y. et al.: Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. – Limnol. Oceanogr. 46: 1249-1260, 2001a. 10.4319/lo.2001.46.6.1249 DOI

Berman-Frank I., Lundgren P., Chen Y.B. et al.: Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. – Science 294: 1534-1537, 2001b. 10.1126/science.1064082 PubMed DOI

Berman-Frank I., Lundgren P., Falkowski P.G.: Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. – Res. Microbiol. 154: 157-164, 2003. 10.1016/S0923-2508(03)00029-9 PubMed DOI

Berman-Frank I., Quigg A., Finkel Z.V. et al.: Nitrogen-fixation strategies and Fe requirements in cyanobacteria. – Limnol. Oceanogr. 52: 2260-2269, 2007. 10.4319/lo.2007.52.5.2260 DOI

Berthelot H., Bonnet S., Grosso O. et al.: Transfer of diazotroph-derived nitrogen towards non-diazotrophic planktonic communities: a comparative study between Trichodesmium erythraeum, Crocosphaera watsonii and Cyanothece sp. – Biogeosciences 13: 4005-4021, 2016. 10.5194/bg-13-4005-2016 DOI

Boatman T.G., Davey P.A., Lawson T., Geider R.J.: CO2 modulation of the rates of photosynthesis and light-dependent O2 consumption in Trichodesmium. – J. Exp. Bot. 70: 589-597, 2019. 10.1093/jxb/ery368 PubMed DOI PMC

Bonnet S., Berthelot H., Turk-Kubo K. et al.: Diazotroph derived nitrogen supports diatom growth in the South West Pacific: A quantitative study using nanoSIMS. – Limnol. Oceanogr. 61: 1549-1562, 2016. 10.1002/lno.10300 DOI

Boyd E.S., Peters J.W.: New insights into the evolutionary history of biological nitrogen fixation. – Front. Microbiol. 4: 201, 2013. 10.3389/fmicb.2013.00201 PubMed DOI PMC

Bristow L.A., Mohr W., Ahmerkamp S., Kuypers M.M.M.: Nutrients that limit growth in the ocean. – Curr. Biol. 27: R474-R478, 2017. 10.1016/j.cub.2017.03.030 PubMed DOI

Capone D.G., Burns J.A., Montoya J.P. et al.: Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. – Global Biogeochem. Cy. 19: GB2024, 2005. 10.1029/2004GB002331 DOI

Capone D.G., Knapp A.N.: A marine nitrogen cycle fix? – Nature 445: 159-160, 2007. 10.1038/445159a PubMed DOI

Capone D.G., O'Neil J.M., Zehr J., Carpenter E.J.: Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium thiebautii. – Appl. Environ. Microb. 56: 3532-3536, 1990. 10.1128/aem.56.11.3532-3536.1990 PubMed DOI PMC

Capone D.G., Zehr J.P., Paerl H.W. et al.: Trichodesmium, a globally significant marine cyanobacterium. – Science 276: 1221-1229, 1997. https://www.science.org/doi/10.1126/science.276.5316.1221 DOI

Carpenter E.J., Bergman B., Dawson R. et al.: Glutamine synthetase and nitrogen cycling in colonies of the marine diazotrophic cyanobacteria Trichodesmium spp. – Appl. Environ. Microb. 58: 3122-3129, 1992. 10.1128/aem.58.9.3122-3129.1992 PubMed DOI PMC

Carpenter E.J., Capone D.G.: Nitrogen fixation in the marine environment. – In: Capone D.G., Bronk D.A., Mulholland M.R., Carpenter E.J. (ed.): Nitrogen in the Marine Environment. 2nd Edition. Pp. 141-198. Academic Press, San Diego: 2008. 10.1016/B978-0-12-372522-6.X0001-1 DOI

Carpenter E.J., Chang J., Cottrell M. et al.: Re-evaluation of nitrogenase oxygen-protective mechanisms in the planktonic marine cyanobacterium Trichodesmium. – Mar. Ecol. Prog. Ser. 65: 151-158, 1990. https://www.jstor.org/stable/24846123

Chen C.-C., Rodriguez I.B., Chen Y.-L.L. et al.: Nickel superoxide dismutase protects nitrogen fixation in Trichodesmium. – Limnol. Oceanogr. Lett. 7: 363-371, 2022. 10.1002/lol2.10263 DOI

Chen Y.-B., Dominic B., Mellon M.T., Zehr J.P.: Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. strain IMS101. – J. Bacteriol. 180: 3598-3605, 1998. 10.1128/JB.180.14.3598-3605.1998 PubMed DOI PMC

Chen Y.-B., Zehr J.P., Mellon M.T.: Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101 in defined media: evidence for a circadian rhythm. – J. Phycol. 32: 916-923, 1996. 10.1111/j.0022-3646.1996.00916.x DOI

Coles V.J., Hood R.R., Pascual M., Capone D.G.: Modeling the impact of Trichodesmium and nitrogen fixation in the Atlantic Ocean. – J. Geophys. Res. 109: C06007, 2004. 10.1029/2002JC001754 DOI

Cornejo-Castillo F.M., Zehr J.P.: Hopanoid lipids may facilitate aerobic nitrogen fixation in the ocean. – P. Natl. Acad. Sci. USA 116: 18269-18271, 2019. 10.1073/pnas.1908165116 PubMed DOI PMC

Delmont T.O.: Environmental genomics points to non-diazotrophic Trichodesmium species abundant and widespread in the open ocean. – P. Natl. Acad. Sci. USA 118: e2112355118, 2021. 10.1073/pnas.2112355118 PubMed DOI PMC

Dugdale R.C., Menzel D.W., Ryther J.H.: Nitrogen fixation in the Sargasso Sea. – Deep Sea Res. 7: 297-300, 1961. 10.1016/0146-6313(61)90051-X DOI

Dupont C.L., Barbeau K., Palenik B.: Ni uptake and limitation in marine Synechococcus strains. – Appl. Environ. Microb. 74: 23-31, 2008. 10.1128/AEM.01007-07 PubMed DOI PMC

Eichner M., Klawonn I., Wilson S.T. et al.: Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2. – ISME J. 11: 1305-1317, 2017. 10.1038/ismej.2017.15 PubMed DOI PMC

Eichner M., Kranz S.A., Rost B.: Combined effects of different CO2 levels and N sources on the diazotrophic cyanobacterium Trichodesmium. – Physiol. Plantarum 152: 316-330, 2014. 10.1111/ppl.12172 PubMed DOI PMC

Eichner M., Thoms S., Rost B. et al.: N2 fixation in free-floating filaments of Trichodesmium is higher than in transiently suboxic colony microenvironments. – New Phytol. 222: 852-863, 2019. 10.1111/nph.15621 PubMed DOI PMC

Eisenhut M., Ruth W., Haimovich M. et al.: The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. – P. Natl. Acad. Sci. USA 105: 17199-17204, 2008. 10.1073/pnas.0807043105 PubMed DOI PMC

El-Shehawy R., Lugomela C., Ernst A., Bergman B.: Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum. – Microbiology 149: 1139-1146, 2003. 10.1099/mic.0.26170-0 PubMed DOI

Falkowski P.G.: Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. – Nature 387: 272-275, 1997. 10.1038/387272a0 DOI

Falkowski P.G., Raven J.A.: Aquatic Photosynthesis. 2nd Edition. Pp. 5-10. Blackwell Science, Malden: 1997. https://press.princeton.edu/books/paperback/9780691115511/aquatic-photosynthesis

Fay P.: Oxygen relations of nitrogen-fixation in cyanobacteria. – Microbiol. Rev. 56: 340-373, 1992. 10.1128/mr.56.2.340-373.1992 PubMed DOI PMC

Finzi-Hart J.A., Pett-Ridge J., Weber P.K. et al.: Fixation and fate of C and N in the cyanobacterium Trichodesmium using nanometer-scale secondary ion mass spectrometry. – P. Natl. Acad. Sci. USA 106: 6345-6350, 2009. 10.1073/pnas.0810547106 PubMed DOI PMC

Fredriksson C., Bergman B.: Nitrogenase quantity varies diurnally in a subset of cells within colonies of the non-heterocystous cyanobacteria Trichodesmium spp. – Microbiology 141: 2471-2478, 1995. 10.1099/13500872-141-10-2471 DOI

Fredriksson C., Bergman B.: Ultrastructural characterisation of cells specialised for nitrogen fixation in a non-heterocystous cyanobacterium, Trichodesmium spp. – Protoplasma 197: 76-85, 1997. 10.1007/BF01279886 DOI

Gallon J.R.: The oxygen sensitivity of nitrogenase: a problem for biochemists and micro-organisms. – Trends Biochem. Sci. 6: 19-23, 1981. 10.1016/0968-0004(81)90008-6 DOI

Gardner J.J., Hodge B.-M.S., Boyle N.R.: Investigating the unique ability of Trichodesmium to fix carbon and nitrogen simultaneously using MiMoSA. – mSystems: e00601-20, 2023. 10.1128/msystems.00601-20 PubMed DOI PMC

Giordano M., Beardall J., Raven J.A.: CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. – Annu. Rev. Plant. Biol. 56: 99-131, 2005. 10.1146/annurev.arplant.56.032604.144052 PubMed DOI

Golden J.W., Yoon H.-S.: Heterocyst development in Anabaena. – Curr. Opin. Microbiol. 6: 557-563, 2003. 10.1016/j.mib.2003.10.004 PubMed DOI

Großkopf T., LaRoche J.: Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. – Front. Microbiol. 3: 236, 2012. 10.3389/fmicb.2012.00236 PubMed DOI PMC

Gruber N.: A bigger nitrogen fix. – Nature 436: 786-787, 2005. 10.1038/436786a PubMed DOI

Held N.A., Sutherland K.M., Webb E.A. et al.: Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics. – ISME Commun. 1: 35, 2021. 10.1038/s43705-021-00034-y PubMed DOI PMC

Held N.A., Waterbury J.B., Webb E.A. et al.: Dynamic diel proteome and daytime nitrogenase activity supports buoyancy in the cyanobacterium Trichodesmium. – Nat. Microbiol. 7: 300-311, 2022. 10.1038/s41564-021-01028-1 PubMed DOI PMC

Helman Y., Tchernov D., Reinhold L. et al.: Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. – Curr. Biol. 13: 230-235, 2003. 10.1016/S0960-9822(03)00046-0 PubMed DOI

Herrmann A.M., Ritz K., Nunan N. et al.: Nano-scale secondary ion mass spectrometry – A new analytical tool in biogeochemistry and soil ecology: A review article. – Soil Biol. Biochem. 39: 1835-1850, 2007. 10.1016/j.soilbio.2007.03.011 DOI

Ho T.-Y.: Nickel limitation of nitrogen fixation in Trichodesmium. – Limnol. Oceanogr. 58: 112-120, 2013. 10.4319/lo.2013.58.1.0112 DOI

Ho T.-Y., Chu T.-H., Hu C.-L.: Interrelated influence of light and Ni on Trichodesmium growth. – Front. Microbiol. 4: 139, 2013. 10.3389/fmicb.2013.00139 PubMed DOI PMC

Hynes A.M., Webb E.A., Doney S.C., Waterbury J.B.: Comparison of cultured Trichodesmium (Cyanophyceae) with species characterized from the field. – J. Phycol. 48: 196-210, 2012. 10.1111/j.1529-8817.2011.01096.x PubMed DOI

Inomura K., Wilson S.T., Deutsch C.: Mechanistic model for the coexistence of nitrogen fixation and photosynthesis in marine Trichodesmium. – mSystems 4: e00210-19, 2019. 10.1128/mSystems.00210-19 PubMed DOI PMC

Janson S., Carpenter E.J., Bergman B.: Compartmentalisation of nitrogenase in a non-heterocystous cyanobacterium: Trichodesmium contortum. – FEMS Microbiol. Lett. 118: 9-14, 1994. 10.1111/j.1574-6968.1994.tb06796.x DOI

Kana T.M.: Rapid oxygen cycling in Trichodesmium thiebautii. – Limnol. Oceanogr. 38: 18-24, 1993. 10.4319/lo.1993.38.1.0018 DOI

Kelman D., Ben-Amotz A., Berman-Frank I.: Carotenoids provide the major antioxidant defence in the globally significant N2-fixing marine cyanobacterium Trichodesmium. – Environ. Microbiol. 11: 1897-1908, 2009. 10.1111/j.1462-2920.2009.01913.x PubMed DOI

Kranz S.A., Dieter S., Richter K.-U., Rost B.: Carbon acquisition by Trichodesmium: The effect of pCO2 and diurnal changes. – Limnol. Oceanogr. 54: 548-559, 2009. 10.4319/lo.2009.54.2.0548 DOI

Kranz S.A., Eichner M., Rost B.: Interactions between CCM and N2 fixation in Trichodesmium. – Photosynth. Res. 109: 73-84, 2011. 10.1007/s11120-010-9611-3 PubMed DOI

Kranz S.A., Levitan O., Richter K.-U. et al.: Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: Physiological responses. – Plant Physiol. 154: 334-345, 2010. 10.1104/pp.110.159145 PubMed DOI PMC

Kumar K., Mella-Herrera R.A., Golden J.W.: Cyanobacterial heterocysts. – Cold Spring Harb. Perspect. Biol. 2: a000315, 2010. 10.1101/cshperspect.a000315 PubMed DOI PMC

Küpper H., Andresen E., Wiegert S. et al.: Reversible coupling of individual phycobiliprotein isoforms during state transitions in the cyanobacterium Trichodesmium analysed by single-cell fluorescence kinetic measurements. – BBA-Bioenergetics 1787: 155-167, 2009. 10.1016/j.bbabio.2009.01.001 PubMed DOI

Küpper H., Ferimazova N., Šetlík I., Berman-Frank I.: Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. – Plant Physiol. 135: 2120-2133, 2004. 10.1104/pp.104.045963 PubMed DOI PMC

Küpper H., Šetlík I., Seibert S. et al.: Iron limitation in the marine cyanobacterium Trichodesmium reveals new insights into regulation of photosynthesis and nitrogen fixation. – New Phytol. 179: 784-798, 2008. 10.1111/j.1469-8137.2008.02497.x PubMed DOI

Küpper H., Šetlík I., Trílek M., Nebdal L.: A microscope for two-dimensional measurements of in vivo chlorophyll fluorescence kinetics using pulsed measuring light, continuous actinic light and saturating flashes. – Photosynthetica 38: 553-570, 2000. 10.1023/A:1012461407557 DOI

Langlois R.J., Hümmer D., LaRoche J.: Abundances and distributions of the dominant nifH phylotypes in the Northern Atlantic Ocean. – Appl. Environ. Microb. 74: 1922-1931, 2008. 10.1128/AEM.01720-07 PubMed DOI PMC

Levitan O., Brown C.M., Sudhaus S. et al.: Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations. – Environ. Microbiol. 12: 1899-1912, 2010b. 10.1111/j.1462-2920.2010.02195.x PubMed DOI

Levitan O., Kranz S.A., Spungin D. et al.: Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: A mechanistic view. – Plant Physiol. 154: 346-356, 2010a. 10.1104/pp.110.159285 PubMed DOI PMC

Levitan O., Rosenberg G., Setlik I. et al.: Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. – Glob. Change Biol. 13: 531-538, 2007. 10.1111/j.1365-2486.2006.01314.x DOI

Lin S., Henze S., Lundgren P. et al.: Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria, Trichodesmium spp. – Appl. Environ. Microb. 64: 3052-3058, 1998. 10.1128/AEM.64.8.3052-3058.1998 PubMed DOI PMC

Lundgren P., Janson S., Jonasson S. et al.: Unveiling of novel radiations within Trichodesmium cluster by hetR gene sequence analysis. – Appl. Environ. Microb. 71: 190-196, 2005. 10.1128/AEM.71.1.190-196.2005 PubMed DOI PMC

Lundgren P., Soderback E., Singer A. et al.: Katagnymene: Characterization of a novel marine diazotroph. – J. Phycol. 37: 1052-1062, 2001. 10.1046/j.1529-8817.2001.00192.x DOI

Luo W., Inomura K., Zhang H., Luoa Y.-W.: N2 fixation in Trichodesmium does not require spatial segregation from photosynthesis. – mSystems 7: e00538-22, 2022. 10.1128/msystems.00538-22 PubMed DOI PMC

Mahaffey C., Michaels A.F., Capone D.G.: The conundrum of marine N2 fixation. – Am. J. Sci. 305: 546-595, 2005. 10.2475/ajs.305.6-8.546 DOI

Mareš J., Strunecký O., Bučinská L., Wiedermannová J.: Evolutionary patterns of thylakoid architecture in cyanobacteria. – Front. Microbiol. 10: 277, 2019. 10.3389/fmicb.2019.00277 PubMed DOI PMC

Martínez-Pérez C., Mohr W., Löscher C.R. et al.: The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. – Nat. Microbiol. 1: 16163, 2016. 10.1038/nmicrobiol.2016.163 PubMed DOI

Middag R., de Baar H.J.W., Bruland K.W., van Heuven S.M.A.C.: The distribution of nickel in the West-Atlantic Ocean, its relationship with phosphate and a comparison to cadmium and zinc. – Front. Mar. Sci. 7: 105, 2020. 10.3389/fmars.2020.00105 DOI

Milligan A.J., Berman-Frank I., Gerchman Y. et al.: Light-dependent oxygen consumption in nitrogen-fixing cyanobacteria plays a key role in nitrogenase protection. – J. Phycol. 43: 845-852, 2007. 10.1111/j.1529-8817.2007.00395.x DOI

Mulholland M.R., Bronk D.A., Capone D.G.: Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. – Aquat. Microb. Ecol. 37: 85-94, 2004. 10.3354/ame037085 DOI

Mulholland M.R., Capone D.G.: Dinitrogen fixation in the Indian Ocean. – In: Wiggert J.D., Hood R.R., Naqvi S.W.A. et al. (ed): Indian Ocean Biogeochemical Processes and Ecological Variability. Pp 167-186. American Geophysical Union, Washington: 2009. 10.1029/2009GM000850 DOI

Mulholland M.R., Lomas M.W.: Nitrogen uptake and assimilation. – In: Capone D.G., Bronk D.A., Mulholland M.R., Carpenter E.J. (ed.): Nitrogen in the Marine Environment. 2nd Edition. Pp. 303-384. Academic Press, San Diego: 2008. 10.1016/B978-0-12-372522-6.00007-4 DOI

Mullineaux C.W., Mariscal V., Nenninger A. et al.: Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. – EMBO J. 27: 1299-1308, 2008. 10.1038/emboj.2008.66 PubMed DOI PMC

Mustila H., Paananen P., Battchikova N. et al.: The flavodiiron protein Flv3 functions as a homo-oligomer during stress acclimation and is distinct from the Flv1/Flv3 hetero-oligomer specific to the O2 photoreduction pathway. – Plant Cell Physiol. 57: 1468-1483, 2016. 10.1093/pcp/pcw047 PubMed DOI PMC

Nikkanen L., Solymosi D., Jokel M., Allahverdiyeva Y.: Regulatory electron transport pathways of photosynthesis in cyanobacteria and microalgae: Recent advances and biotechnological prospects. – Physiol. Plantarum 173: 514-525, 2021. 10.1111/ppl.13404 PubMed DOI

Ohki K.: Intercellular localization of nitrogenase in a non-heterocystous cyanobacterium (Cyanophyte), Trichodesmium sp. NIBB1067. – J. Oceanogr. 64: 211-216, 2008. 10.1007/s10872-008-0016-2 DOI

Ohki K., Fujita Y.: Laboratory culture of the pelagic blue-green alga Trichodesmium thiebautii: Conditions for unialgal culture. – Mar. Ecol. Prog. Ser. 7: 185-190, 1982. http://www.int-res.com/articles/meps/7/m007p185.pdf

Ohki K., Fujita Y.: Aerobic nitrogenase activity measured as acetylene reduction in the marine non-heterocystous cyanobacterium Trichodesmium spp. grown under artificial conditions. – Mar. Biol. 98: 111-114, 1988. 10.1007/BF00392665 DOI

Ohki K., Taniuchi Y.: Detection of nitrogenase in individual cells of a natural population of Trichodesmium using immunocytochemical methods for fluorescent cells. – J. Oceanogr. 65: 427-432, 2009. 10.1007/s10872-009-0037-5 DOI

Orcutt K.M., Rasmussen U., Webb E.A. et al.: Characterization of Trichodesmium spp. by genetic techniques. – Appl. Environ. Microb. 68: 2236-2245, 2002. 10.1128/AEM.68.5.2236-2245.2002 PubMed DOI PMC

Orcutt K.M., Ren S., Gundersen K.: Detecting proteins in highly autofluorescent cells using quantum dot antibody conjugates. – Sensors-Basel 9: 7540-7549, 2009. 10.3390/s90907540 PubMed DOI PMC

Paerl H.W., Bebout B.M.: Direct measurement of O2-depleted microzones in marine Oscillatoria: relation to N2 fixation. – Science 241: 442-445, 1988. https://science.sciencemag.org/content/241/4864/442 PubMed

Paerl H.W., Priscu J.C., Brawner D.L.: Immunochemical localization of nitrogenase in marine Trichodesmium aggregates: Relationship to N2 fixation potential. – Appl. Environ. Microb. 55: 2965-2975, 1989. 10.1128/aem.55.11.2965-2975.1989 PubMed DOI PMC

Pajares S., Ramos R.: Processes and microorganisms involved in the marine nitrogen cycle: Knowledge and gaps. – Front. Mar. Sci. 6: 739, 2019. 10.3389/fmars.2019.00739 DOI

Pierella Karlusich J.J., Pelletier E., Lombard F. et al.: Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. – Nat. Commun. 12: 4160, 2021. 10.1038/s41467-021-24299-y PubMed DOI PMC

Poger D., Mark A.E.: The relative effect of sterols and hopanoids on lipid bilayers: When comparable is not identical. – J. Phys. Chem. B 117: 16129-16140, 2013. 10.1021/jp409748d PubMed DOI

Postgate J.R.: Nitrogen Fixation. 3rd Edition. Cambridge University Press, Cambridge: 1998. https://www.cambridge.org/cz/academic/subjects/life-sciences/ecology-and-conservation/nitrogen-fixation-3rd-edition?format=PB&isbn=9780521648530

Prufert-Bebout L., Paerl H.W., Lassen C.: Growth, nitrogen fixation, and spectral attenuation in cultivated Trichodesmium species. – Appl. Environ. Microb. 59: 1367-1375, 1993. 10.1128/aem.59.5.1367-1375.1993 PubMed DOI PMC

Rascio N., La Rocca N.: Biological nitrogen fixation. – In: Elias S.A. (ed.): Reference Module in Earth Systems and Environmental Sciences. Pp. 412-419. Elsevier, Amsterdam: 2013.

Robson R.L., Postgate J.R.: Oxygen and hydrogen in biological nitrogen fixation. – Annu. Rev. Microbiol. 34: 183-207, 1980. 10.1146/annurev.mi.34.100180.001151 PubMed DOI

Rodriguez I.B., Ho T.-Y.: Diel nitrogen fixation pattern of Trichodesmium: the interactive control of light and Ni. – Sci. Rep.-UK 4: 4445, 2014. 10.1038/srep04445 PubMed DOI PMC

Rodriguez I.B., Ho T.-Y.: Interactive effects of spectral quality and trace metal availability on the growth of Trichodesmium and Symbiodinium. – PLoS ONE 12: e0188777, 2017. 10.1371/journal.pone.0188777 PubMed DOI PMC

Sandh G., El-Shehawy R., Díez B., Bergman B.: Temporal separation of cell division and diazotrophy in the marine diazotrophic cyanobacterium Trichodesmium erythraeum IMS101. – FEMS Microbiol. Lett. 295: 281-288, 2009. 10.1111/j.1574-6968.2009.01608.x PubMed DOI

Sandh G., Ran L., Xu L. et al.: Comparative proteomic profiles of the marine cyanobacterium Trichodesmium erythraeum IMS101 under different nitrogen regimes. – Proteomics 11: 406-419, 2011. 10.1002/pmic.201000382 PubMed DOI

Sandh G., Xu L., Bergman B.: Diazocyte development in the marine diazotrophic cyanobacterium Trichodesmium. – Microbiology 158: 345-352, 2012. 10.1099/mic.0.051268-0 PubMed DOI

Schlesier J., Rohde M., Gerhardt S., Einsle O.: A conformational switch triggers nitrogenase protection from oxygen damage by Shethna protein II (FeSII). – J. Am. Chem. Soc. 138: 239-247, 2016. 10.1021/jacs.5b10341 PubMed DOI

Schneegurt M.A., Sherman D.M., Nayar S., Sherman L.A.: Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. – J. Bacteriol. 176: 1586-1597, 1994. 10.1128/jb.176.6.1586-1597.1994 PubMed DOI PMC

Seefeldt L.C., Yang Z.-Y., Lukoyanov D.A. et al.: Reduction of substrates by nitrogenases. – Chem. Rev. 120: 5082-5106, 2020. 10.1021/acs.chemrev.9b00556 PubMed DOI PMC

Siddiqui P.J.A., Carpenter E.J., Bergman B.: Ultrastructure and immunolocalization of phycobiliproteins and ribulose-1,5-bisphosphate carboxylase/oxygenase in the marine cyanobacterium Trichodesmium thiebautii. – J. Phycol. 28: 320-327, 1992. 10.1111/j.0022-3646.1992.00320.x DOI

Tamagnini P., Axelsson R., Lindberg P. et al.: Hydrogenases and hydrogen metabolism of cyanobacteria. – Microbiol. Mol. Biol. Rev. 66: 1-20, 2002. 10.1128/MMBR.66.1.1-20.2002 PubMed DOI PMC

Taniuchi Y., Murakami A., Ohki K.: Whole-cell immunocytochemical detection of nitrogenase in cyanobacteria: improved protocol for highly fluorescent cells. – Aquat. Microb. Ecol. 51: 237-247, 2008. 10.3354/ame01197 DOI

Tyrrell T., Marañon E., Poulton A.J. et al.: Large-scale latitudinal distribution of Trichodesmium spp. in the Atlantic Ocean. – J. Plankton Res. 25: 405-416, 2003. 10.1093/plankt/25.4.405 DOI

Weiss G.L., Kieninger A.-K., Maldener I. et al.: Structure and function of a bacterial gap junction analog. – Cell 178: 374-384, 2019. 10.1016/j.cell.2019.05.055 PubMed DOI PMC

Westberry T.K., Siegel D.A.: Spatial and temporal distribution of Trichodesmium blooms in the world's oceans. – Global Biogeochem. Cy. 20: GB4016, 2006. 10.1029/2005GB002673 DOI

Zehr J.P., Capone D.G.: Changing perspectives in marine nitrogen fixation. – Science 368: eaay9514, 2020. https://www.science.org/doi/10.1126/science.aay9514 PubMed DOI

Zehr J.P., Wyman M., Miller V. et al.: Modification of the Fe protein of nitrogenase in natural populations of Trichodesmium thiebautii. – Appl. Environ. Microb. 59: 669-676, 1993. 10.1128/aem.59.3.669-676.1993 PubMed DOI PMC

Zhang P., Allahverdiyeva Y., Eisenhut M., Aro E.-M.: Flavodiiron proteins in oxygenic photosynthetic organisms: Photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. – PLoS ONE 4: e5331, 2009. 10.1371/journal.pone.0005331 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...