• This record comes from PubMed

Developmental models of the carrion beetle Thanatophilus rugosus (Linnaeus, 1758) (Coleoptera: Silphidae)

. 2021 Sep 29 ; 11 (1) : 19377. [epub] 20210929

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 34588559
PubMed Central PMC8481461
DOI 10.1038/s41598-021-98833-9
PII: 10.1038/s41598-021-98833-9
Knihovny.cz E-resources

Coleoptera are currently considered a fundamental tool to help solve criminal investigations, allowing forensic entomologists to estimate post-mortem intervals and obtain other ecology-related information. Thanatophilus rugosus (Linnaeus, 1758) is an important necrophagous beetle distributed through most of the Palaearctic region, where it is readily found on human bodies and animal carcasses. In this study, the new thermal summation models for all the developmental stages of Thanatophilus rugosus are provided. Beetles were reared at six different constant and ecologically relevant temperatures (12, 14, 16, 18, 20, and 22 °C), and their developmental times were measured. Thermal summation constants were calculated for each developmental stage (egg, three larval instars, post-feeding stage, and pupa).

See more in PubMed

Matuszewski S. Post-mortem interval estimation based on insect evidence: Current challenges. Insects. 2021;12:314. doi: 10.3390/insects12040314. PubMed DOI PMC

Matuszewski S, Mądra-Bielewicz A. Validation of temperature methods for the estimation of pre-appearance interval in carrion insects. Forensic Sci. Med. Pathol. 2016;12:50–57. doi: 10.1007/s12024-015-9735-z. PubMed DOI PMC

Ridgeway JA, Midgley JM, Collett IJ, Villet MH. Advantages of using development models of the carrion beetles Thanatophilus micans (Fabricius) and T. mutilatus (Castelneau) (Coleoptera: Silphidae) for estimating minimum post mortem intervals, verified with case data. Int. J. Legal Med. 2014;128:207–220. doi: 10.1007/s00414-013-0865-0. PubMed DOI

Newton, A. F. Staphyliniformia world catalog database (Nov 2018). Staphyliniformia World Catalog Database (2021). http://archive.fieldmuseum.org/peet_staph (Accessed 5 April 2021).

Midgley JM, Villet MH. Development of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) at constant temperatures. Int. J. Legal Med. 2009;123:285–292. doi: 10.1007/s00414-008-0280-0. PubMed DOI

Midgley JM, Richards CS, Villet MH. The utility of coleoptera in forensic investigations. In: Amendt J, Goff ML, Campobasso CP, Grassberger M, editors. Current Concepts in Forensic Entomology. Springer; 2010. pp. 57–68.

Kočárek P. Diel activity patterns of carrion-visiting Coleoptera studied by time-sorting pitfall traps. Biologia (Bratisl.) 2002;57:199–211.

Dekeirsschieter J, Frederickx C, Verheggen FJ, Boxho P, Haubruge E. Forensic entomology investigations from doctor marcel leclercq (1924–2008): A review of cases from 1969 to 2005. J. Med. Entomol. 2013;50:935–954. doi: 10.1603/ME12097. PubMed DOI

Jakubec P, Růžička J. Is the type of soil an important factor determining the local abundance of carrion beetles (Coleoptera: Silphidae)? Eur. J. Entomol. 2015;112:747–754. doi: 10.14411/eje.2015.071. DOI

Dekeirsschieter J, et al. Electrophysiological and behavioral responses of Thanatophilus sinuatus fabricius (Coleoptera: Silphidae) to selected cadaveric volatile organic compounds. J. Forensic Sci. 2013;58:917–923. doi: 10.1111/1556-4029.12123. PubMed DOI

Jakubec P, Novák M, Qubaiová J, Šuláková H, Růžička J. Description of immature stages of Thanatophilus sinuatus (Coleoptera: Silphidae) Int. J. Legal Med. 2019;133:1549–1565. doi: 10.1007/s00414-019-02040-1. PubMed DOI

Montoya-Molina S, et al. Developmental models of the forensically important carrion beetle, Thanatophilus sinuatus (Coleoptera: Silphidae) J. Med. Entomol. 2021;58:1041–1047. doi: 10.1093/jme/tjaa255. PubMed DOI

Frątczak-Łagiewska K, Matuszewski S. Resource partitioning between closely related carrion beetles: Thanatophilus sinuatus (F.) and Thanatophilus rugosus (L.) (Coleoptera: Silphidae) Entomol. Gen. 2018;37:143–156. doi: 10.1127/entomologia/2018/0352. DOI

Esh M, Oxbrough A. Macrohabitat associations and phenology of carrion beetles (Coleoptera: Silphidae, Leiodidae: Cholevinae) J. Insect Conserv. 2020 doi: 10.1007/s10841-020-00278-4. DOI

Bonacci T, Greco S, Brandmayr TZ. Insect fauna and degradation activity of Thanatophilus species on carrion in Southern Italy (Coleoptera: Silphidae) Entomol. Gen. 2011;33:63–70. doi: 10.1127/entom.gen/33/2011/63. DOI

Novák M, Jakubec P, Qubaiová J, Šuláková H, Růžička J. Revisited larval morphology of Thanatophilus rugosus (Coleoptera: Silphidae) Int. J. Legal Med. 2018;132:939–954. doi: 10.1007/s00414-017-1764-6. PubMed DOI

Charabidze D, Vincent B, Pasquerault T, Hedouin V. The biology and ecology of Necrodes littoralis, a species of forensic interest in Europe. Int. J. Legal Med. 2016;130:273–280. doi: 10.1007/s00414-015-1253-8. PubMed DOI

Gruszka J, Matuszewski S. Estimation of physiological age at emergence based on traits of the forensically useful adult carrion beetle Necrodes littoralis L. (Silphidae) Forensic Sci. Int. 2020;314:110407. doi: 10.1016/j.forsciint.2020.110407. PubMed DOI

Frątczak-Łagiewska K, Grzywacz A, Matuszewski S. Development and validation of forensically useful growth models for Central European population of Creophilus maxillosus L. (Coleoptera: Staphylinidae) Int. J. Legal Med. 2020;134:1531–1545. doi: 10.1007/s00414-020-02275-3. PubMed DOI PMC

Růžička J. Silphidae. In: Löbl I, Löbl D, editors. Catalogue of Palaearctic Coleoptera Volume 2/1. Hydrophiloidea—Staphylinoidea, Revised and Updated Edition. Brill; 2015. pp. 291–304.

Guerroudj FZ, Berchi S. Effect of temperature on the development of carrion beetle Silpha rugosa (Linnaeus, 1758) (Coleoptera: Silphidae) in Algeria. J. Entomol. Zool. Stud. 2016;4:920–922.

Schawaller W. Taxonomie und Faunistik der Gattung Thanatophilus (Coleoptera: Silphidae) Stuttgarter Beiträge zur Naturkunde Ser. A. 1981;351:1–21.

Piloña FP, Valcárcel JP, Rey-Daluz F. Catálogo de los Silphidae y Ayrtidae de la Península Ibérica e Islas Baleares. Bol. la Soc. Entomol. Aragon. 2002;30:1–32.

Honěk A. Geographical variation in thermal requirements for development. Eur. J. Entomol. 1996;93:303–312.

Trudgill DL, Honek A, Li D, Van Straalen NM. Thermal time—Concepts and utility. Ann. Appl. Biol. 2005;146:1–14. doi: 10.1111/j.1744-7348.2005.04088.x. DOI

Jakubec P, Qubaiová J, Novák M, Růžička J. Developmental biology of forensically important beetle, Necrophila (Calosilpha) brunnicollis (Coleoptera: Silphidae) J. Med. Entomol. 2020;58:64–70. PubMed

Boukal DS, et al. Analyses of developmental rate isomorphy in ectotherms: introducing the Dirichlet regression. PLoS ONE. 2015;10:e0129341. doi: 10.1371/journal.pone.0129341. PubMed DOI PMC

Kočárek P. Diurnal activity rhythms and niche differentiation in a carrion beetle assemblage ( Coleoptera : Silphidae ) in Opava, the Czech Republic. Biol. Rhythm Res. 2001;32:431–438. doi: 10.1076/brhm.32.4.431.1333. DOI

Therneau, T. M. A Package for Survival Analysis in R (2021).

Ikemoto T, Takai K. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ. Entomol. 2000;29:671–682. doi: 10.1603/0046-225X-29.4.671. DOI

R Core Team. R: A Language and Environment for Statistical Computing [Program] (2020). https://www.r-project.org/.

Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2009.

Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science (2020). Accessed 1 Sept 2020. https://CRAN.R-project.org/package=sjPlot.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...