Developmental models of the carrion beetle Thanatophilus rugosus (Linnaeus, 1758) (Coleoptera: Silphidae)
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
34588559
PubMed Central
PMC8481461
DOI
10.1038/s41598-021-98833-9
PII: 10.1038/s41598-021-98833-9
Knihovny.cz E-resources
- MeSH
- Coleoptera growth & development MeSH
- Forensic Entomology methods MeSH
- Feeding Behavior MeSH
- Temperature MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Coleoptera are currently considered a fundamental tool to help solve criminal investigations, allowing forensic entomologists to estimate post-mortem intervals and obtain other ecology-related information. Thanatophilus rugosus (Linnaeus, 1758) is an important necrophagous beetle distributed through most of the Palaearctic region, where it is readily found on human bodies and animal carcasses. In this study, the new thermal summation models for all the developmental stages of Thanatophilus rugosus are provided. Beetles were reared at six different constant and ecologically relevant temperatures (12, 14, 16, 18, 20, and 22 °C), and their developmental times were measured. Thermal summation constants were calculated for each developmental stage (egg, three larval instars, post-feeding stage, and pupa).
See more in PubMed
Matuszewski S. Post-mortem interval estimation based on insect evidence: Current challenges. Insects. 2021;12:314. doi: 10.3390/insects12040314. PubMed DOI PMC
Matuszewski S, Mądra-Bielewicz A. Validation of temperature methods for the estimation of pre-appearance interval in carrion insects. Forensic Sci. Med. Pathol. 2016;12:50–57. doi: 10.1007/s12024-015-9735-z. PubMed DOI PMC
Ridgeway JA, Midgley JM, Collett IJ, Villet MH. Advantages of using development models of the carrion beetles Thanatophilus micans (Fabricius) and T. mutilatus (Castelneau) (Coleoptera: Silphidae) for estimating minimum post mortem intervals, verified with case data. Int. J. Legal Med. 2014;128:207–220. doi: 10.1007/s00414-013-0865-0. PubMed DOI
Newton, A. F. Staphyliniformia world catalog database (Nov 2018). Staphyliniformia World Catalog Database (2021). http://archive.fieldmuseum.org/peet_staph (Accessed 5 April 2021).
Midgley JM, Villet MH. Development of Thanatophilus micans (Fabricius 1794) (Coleoptera: Silphidae) at constant temperatures. Int. J. Legal Med. 2009;123:285–292. doi: 10.1007/s00414-008-0280-0. PubMed DOI
Midgley JM, Richards CS, Villet MH. The utility of coleoptera in forensic investigations. In: Amendt J, Goff ML, Campobasso CP, Grassberger M, editors. Current Concepts in Forensic Entomology. Springer; 2010. pp. 57–68.
Kočárek P. Diel activity patterns of carrion-visiting Coleoptera studied by time-sorting pitfall traps. Biologia (Bratisl.) 2002;57:199–211.
Dekeirsschieter J, Frederickx C, Verheggen FJ, Boxho P, Haubruge E. Forensic entomology investigations from doctor marcel leclercq (1924–2008): A review of cases from 1969 to 2005. J. Med. Entomol. 2013;50:935–954. doi: 10.1603/ME12097. PubMed DOI
Jakubec P, Růžička J. Is the type of soil an important factor determining the local abundance of carrion beetles (Coleoptera: Silphidae)? Eur. J. Entomol. 2015;112:747–754. doi: 10.14411/eje.2015.071. DOI
Dekeirsschieter J, et al. Electrophysiological and behavioral responses of Thanatophilus sinuatus fabricius (Coleoptera: Silphidae) to selected cadaveric volatile organic compounds. J. Forensic Sci. 2013;58:917–923. doi: 10.1111/1556-4029.12123. PubMed DOI
Jakubec P, Novák M, Qubaiová J, Šuláková H, Růžička J. Description of immature stages of Thanatophilus sinuatus (Coleoptera: Silphidae) Int. J. Legal Med. 2019;133:1549–1565. doi: 10.1007/s00414-019-02040-1. PubMed DOI
Montoya-Molina S, et al. Developmental models of the forensically important carrion beetle, Thanatophilus sinuatus (Coleoptera: Silphidae) J. Med. Entomol. 2021;58:1041–1047. doi: 10.1093/jme/tjaa255. PubMed DOI
Frątczak-Łagiewska K, Matuszewski S. Resource partitioning between closely related carrion beetles: Thanatophilus sinuatus (F.) and Thanatophilus rugosus (L.) (Coleoptera: Silphidae) Entomol. Gen. 2018;37:143–156. doi: 10.1127/entomologia/2018/0352. DOI
Esh M, Oxbrough A. Macrohabitat associations and phenology of carrion beetles (Coleoptera: Silphidae, Leiodidae: Cholevinae) J. Insect Conserv. 2020 doi: 10.1007/s10841-020-00278-4. DOI
Bonacci T, Greco S, Brandmayr TZ. Insect fauna and degradation activity of Thanatophilus species on carrion in Southern Italy (Coleoptera: Silphidae) Entomol. Gen. 2011;33:63–70. doi: 10.1127/entom.gen/33/2011/63. DOI
Novák M, Jakubec P, Qubaiová J, Šuláková H, Růžička J. Revisited larval morphology of Thanatophilus rugosus (Coleoptera: Silphidae) Int. J. Legal Med. 2018;132:939–954. doi: 10.1007/s00414-017-1764-6. PubMed DOI
Charabidze D, Vincent B, Pasquerault T, Hedouin V. The biology and ecology of Necrodes littoralis, a species of forensic interest in Europe. Int. J. Legal Med. 2016;130:273–280. doi: 10.1007/s00414-015-1253-8. PubMed DOI
Gruszka J, Matuszewski S. Estimation of physiological age at emergence based on traits of the forensically useful adult carrion beetle Necrodes littoralis L. (Silphidae) Forensic Sci. Int. 2020;314:110407. doi: 10.1016/j.forsciint.2020.110407. PubMed DOI
Frątczak-Łagiewska K, Grzywacz A, Matuszewski S. Development and validation of forensically useful growth models for Central European population of Creophilus maxillosus L. (Coleoptera: Staphylinidae) Int. J. Legal Med. 2020;134:1531–1545. doi: 10.1007/s00414-020-02275-3. PubMed DOI PMC
Růžička J. Silphidae. In: Löbl I, Löbl D, editors. Catalogue of Palaearctic Coleoptera Volume 2/1. Hydrophiloidea—Staphylinoidea, Revised and Updated Edition. Brill; 2015. pp. 291–304.
Guerroudj FZ, Berchi S. Effect of temperature on the development of carrion beetle Silpha rugosa (Linnaeus, 1758) (Coleoptera: Silphidae) in Algeria. J. Entomol. Zool. Stud. 2016;4:920–922.
Schawaller W. Taxonomie und Faunistik der Gattung Thanatophilus (Coleoptera: Silphidae) Stuttgarter Beiträge zur Naturkunde Ser. A. 1981;351:1–21.
Piloña FP, Valcárcel JP, Rey-Daluz F. Catálogo de los Silphidae y Ayrtidae de la Península Ibérica e Islas Baleares. Bol. la Soc. Entomol. Aragon. 2002;30:1–32.
Honěk A. Geographical variation in thermal requirements for development. Eur. J. Entomol. 1996;93:303–312.
Trudgill DL, Honek A, Li D, Van Straalen NM. Thermal time—Concepts and utility. Ann. Appl. Biol. 2005;146:1–14. doi: 10.1111/j.1744-7348.2005.04088.x. DOI
Jakubec P, Qubaiová J, Novák M, Růžička J. Developmental biology of forensically important beetle, Necrophila (Calosilpha) brunnicollis (Coleoptera: Silphidae) J. Med. Entomol. 2020;58:64–70. PubMed
Boukal DS, et al. Analyses of developmental rate isomorphy in ectotherms: introducing the Dirichlet regression. PLoS ONE. 2015;10:e0129341. doi: 10.1371/journal.pone.0129341. PubMed DOI PMC
Kočárek P. Diurnal activity rhythms and niche differentiation in a carrion beetle assemblage ( Coleoptera : Silphidae ) in Opava, the Czech Republic. Biol. Rhythm Res. 2001;32:431–438. doi: 10.1076/brhm.32.4.431.1333. DOI
Therneau, T. M. A Package for Survival Analysis in R (2021).
Ikemoto T, Takai K. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ. Entomol. 2000;29:671–682. doi: 10.1603/0046-225X-29.4.671. DOI
R Core Team. R: A Language and Environment for Statistical Computing [Program] (2020). https://www.r-project.org/.
Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer; 2009.
Bates D, Maechler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science (2020). Accessed 1 Sept 2020. https://CRAN.R-project.org/package=sjPlot.