Optical sensors of heterotrimeric G protein signaling
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
33283426
DOI
10.1111/febs.15655
Knihovny.cz E-zdroje
- Klíčová slova
- BRET, FRET, G protein, G protein-coupled receptor, TIRF, imaging, optogenetics, polarization microscopy, sensor, single-molecule imaging,
- MeSH
- biosenzitivní techniky * MeSH
- heterotrimerní G-proteiny chemie genetika MeSH
- lidé MeSH
- molekulární zobrazování * MeSH
- receptory spřažené s G-proteiny chemie genetika MeSH
- signální transdukce genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- heterotrimerní G-proteiny MeSH
- receptory spřažené s G-proteiny MeSH
Heterotrimeric G proteins are central mediators of cellular signal transduction. They receive, process, and transduce signals from G protein-coupled receptors to downstream effectors. Since their discovery, a number of optical sensors of G protein localisation and function have been developed and applied in living systems. In this minireview, we provide an overview of existing G protein-based sensors and the experimental approaches they utilise, with emphasis on live-cell imaging techniques. We outline recent advances, as well as identify current challenges and likely future directions in the field of G protein sensor development.
Zobrazit více v PubMed
Strotmann R, Schrock K, Boselt I, Staubert C, Russ A & Schoneberg T (2011) Evolution of GPCR: change and continuity. Mol Cell Endocrinol 331, 170-178.
Syrovatkina V, Alegre KO, Dey R & Huang XY (2016) Regulation, signaling, and physiological functions of G-Proteins. J Mol Biol 428, 3850-3868.
Tian H, Furstenberg A & Huber T (2017) Labeling and single-molecule methods to monitor G protein-coupled receptor dynamics. Chem Rev 117, 186-245.
Ni Q, Mehta S & Zhang J (2018) Live-cell imaging of cell signaling using genetically encoded fluorescent reporters. FEBS J 285, 203-219.
Guo H, An S, Ward R, Yang Y, Liu Y, Guo XX, Hao Q & Xu TR (2017) Methods used to study the oligomeric structure of G-protein-coupled receptors. Biosci Rep 37, BSR20160547.
Kankanamge D, Ratnayake K, Senarath K, Tennakoon M, Harmon E & Karunarathne A (2019) Optical approaches for single-cell and subcellular analysis of GPCR-G protein signaling. Anal Bioanal Chem 411, 4481-4508.
El Khamlichi C, Reverchon-Assadi F, Hervouet-Coste N, Blot L, Reiter E & Morisset-Lopez S (2019) Bioluminescence resonance energy transfer as a method to study protein-protein interactions: application to G protein coupled receptor biology. Molecules 24, 537.
Remmers AE, Posner R & Neubig RR (1994) Fluorescent guanine nucleotide analogs and G protein activation. J Biol Chem 269, 13771-13778.
Jameson EE, Roof RA, Whorton MR, Mosberg HI, Sunahara RK, Neubig RR & Kennedy RT (2005) Real-time detection of basal and stimulated G protein GTPase activity using fluorescent GTP analogues. J Biol Chem 280, 7712-7719.
McEwen DP, Gee KR, Kang HC & Neubig RR (2001) Fluorescent BODIPY-GTP analogs: real-time measurement of nucleotide binding to G proteins. Anal Biochem 291, 109-117.
Janetopoulos C, Jin T & Devreotes P (2001) Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science 291, 2408-2411.
Yu JZ & Rasenick MM (2002) Real-time visualization of a fluorescent G(alpha)(s): dissociation of the activated G protein from plasma membrane. Mol Pharmacol 61, 352-359.
Hein P, Frank M, Hoffmann C, Lohse MJ & Bunemann M (2005) Dynamics of receptor/G protein coupling in living cells. EMBO J 24, 4106-4114.
Gales C, Rebois RV, Hogue M, Trieu P, Breit A, Hebert TE & Bouvier M (2005) Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2, 177-184.
Leaney JL, Benians A, Graves FM & Tinker A (2002) A novel strategy to engineer functional fluorescent inhibitory G-protein alpha subunits. J Biol Chem 277, 28803-28809.
Bunemann M, Frank M & Lohse MJ (2003) Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci USA 100, 16077-16082.
Frank M, Thumer L, Lohse MJ & Bunemann M (2005) G Protein activation without subunit dissociation depends on a G{alpha}(i)-specific region. J Biol Chem 280, 24584-24590.
Hughes TE, Zhang H, Logothetis DE & Berlot CH (2001) Visualization of a functional Galpha q-green fluorescent protein fusion in living cells. Association with the plasma membrane is disrupted by mutational activation and by elimination of palmitoylation sites, but not be activation mediated by receptors or AlF4. J Biol Chem 276, 4227-4235.
Ruiz-Velasco V & Ikeda SR (2001) Functional expression and FRET analysis of green fluorescent proteins fused to G-protein subunits in rat sympathetic neurons. J Physiol 537, 679-692.
Piston DW & Rizzo MA (2008) FRET by fluorescence polarization microscopy. Methods Cell Biol 85, 415-430.
Greenwald EC, Mehta S & Zhang J (2018) Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem Rev 118, 11707-11794.
Mastop M, Reinhard NR, Zuconelli CR, Terwey F, Gadella TWJ Jr, van Unen J, Adjobo-Hermans MJW & Goedhart J (2018) A FRET-based biosensor for measuring Galpha13 activation in single cells. PLoS One 13, e0193705.
Hein P, Rochais F, Hoffmann C, Dorsch S, Nikolaev VO, Engelhardt S, Berlot CH, Lohse MJ & Bunemann M (2006) Gs activation is time-limiting in initiating receptor-mediated signaling. J Biol Chem 281, 33345-33351.
Nobles M, Benians A & Tinker A (2005) Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci USA 102, 18706-18711.
Damian M, Mary S, Maingot M, M'Kadmi C, Gagne D, Leyris JP, Denoyelle S, Gaibelet G, Gavara L, de Souza G et al. (2015) Ghrelin receptor conformational dynamics regulate the transition from a preassembled to an active receptor: Gq complex. Proc Natl Acad Sci USA 112, 1601-1606.
Andressen KW, Ulsund AH, Krobert KA, Lohse MJ, Bunemann M & Levy FO (2018) Related GPCRs couple differently to Gs: preassociation between G protein and 5-HT7 serotonin receptor reveals movement of Galphas upon receptor activation. FASEB J 32, 1059-1069.
Ulsund AH, Dahl M, Frimurer TM, Manfra O, Schwartz TW, Levy FO & Andressen KW (2019) Preassociation between the 5-HT7 serotonin receptor and G protein Gs: molecular determinants and association with low potency activation of adenylyl cyclase. FASEB J 33, 3870-3886.
Riven I, Iwanir S & Reuveny E (2006) GIRK channel activation involves a local rearrangement of a preformed G protein channel complex. Neuron 51, 561-573.
Benians A, Nobles M, Hosny S & Tinker A (2005) Regulators of G-protein signaling form a quaternary complex with the agonist, receptor, and G-protein. A novel explanation for the acceleration of signaling activation kinetics. J Biol Chem 280, 13383-13394.
Abankwa D & Vogel H (2007) A FRET map of membrane anchors suggests distinct microdomains of heterotrimeric G proteins. J Cell Sci 120, 2953-2962.
Gregorio GG, Masureel M, Hilger D, Terry DS, Juette M, Zhao H, Zhou Z, Perez-Aguilar JM, Hauge M, Mathiasen S et al. (2017) Single-molecule analysis of ligand efficacy in beta2AR-G-protein activation. Nature 547, 68-73.
Gales C, Van Durm JJ, Schaak S, Pontier S, Percherancier Y, Audet M, Paris H & Bouvier M (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 13, 778-786.
Masuho I, Martemyanov KA & Lambert NA (2015) Monitoring G protein activation in cells with BRET. Methods Mol Biol 1335, 107-113.
Maziarz M, Park JC, Leyme A, Marivin A, Garcia-Lopez A, Patel PP & Garcia-Marcos M (2020) Revealing the activity of trimeric G-proteins in live cells with a versatile biosensor design. Cell 182, 770-785.e16.
Olsen RHJ, DiBerto JF, English JG, Glaudin AM, Krumm BE, Slocum ST, Che T, Gavin AC, McCorvy JD, Roth BL et al. (2020) TRUPATH, an open-source biosensor platform for interrogating the GPCR transducerome. Nat Chem Biol 16, 841-849.
Yano H, Provasi D, Cai NS, Filizola M, Ferre S & Javitch JA (2017) Development of novel biosensors to study receptor-mediated activation of the G-protein alpha subunits Gs and Golf. J Biol Chem 292, 19989-19998.
Avet C, Mancini A, Breton B, Le Gouill C, Hauser AS, Normand C, Kobayashi H, Gross F, Hogue M, Lukasheva V et al. (2020) Selectivity landscape of 100 therapeutically relevant GPCR profiled by an effector translocation-based BRET platform. bioRxiv 2020.04.20.052027 [PREPRINT].
Okashah N, Wan Q, Ghosh S, Sandhu M, Inoue A, Vaidehi N & Lambert NA (2019) Variable G protein determinants of GPCR coupling selectivity. Proc Natl Acad Sci USA 116, 12054-12059.
Rebois RV, Robitaille M, Gales C, Dupre DJ, Baragli A, Trieu P, Ethier N, Bouvier M & Hebert TE (2006) Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci 119, 2807-2818.
Navarro G, Cordomi A, Casado-Anguera V, Moreno E, Cai NS, Cortes A, Canela EI, Dessauer CW, Casado V, Pardo L et al. (2018) Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase. Nat Commun 9, 1242.
Smith JS, Pack TF, Inoue A, Lee C, Xiong X, Zheng K, Kahsai AW, Choi I, Ma Z, Levitan IM et al. (2019) Noncanonical scaffolding of Gαi and β-arrestin by G protein-coupled receptors. bioRxiv 629576 [PREPRINT].
Hollins B, Kuravi S, Digby GJ & Lambert NA (2009) The c-terminus of GRK3 indicates rapid dissociation of G protein heterotrimers. Cell Signal 21, 1015-1021.
Masuho I, Ostrovskaya O, Kramer GM, Jones CD, Xie K & Martemyanov KA (2015) Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci Signal 8, ra123.
Martin BR & Lambert NA (2016) Activated G protein Galphas samples multiple endomembrane compartments. J Biol Chem 291, 20295-20302.
Adjobo-Hermans MJ, Goedhart J, van Weeren L, Nijmeijer S, Manders EM, Offermanns S & Gadella TW Jr (2011) Real-time visualization of heterotrimeric G protein Gq activation in living cells. BMC Biol 9, 32.
Gibson SK & Gilman AG (2006) Gialpha and Gbeta subunits both define selectivity of G protein activation by alpha2-adrenergic receptors. Proc Natl Acad Sci USA 103, 212-217.
Bondar A & Lazar J (2014) Dissociated GalphaGTP and Gbetagamma protein subunits are the major activated form of heterotrimeric Gi/o proteins. J Biol Chem 289, 1271-1281.
Shrestha D, Jenei A, Nagy P, Vereb G & Szollosi J (2015) Understanding FRET as a research tool for cellular studies. Int J Mol Sci 16, 6718-6756.
Digby GJ, Lober RM, Sethi PR & Lambert NA (2006) Some G protein heterotrimers physically dissociate in living cells. Proc Natl Acad Sci USA 103, 17789-17794.
Hein P & Bunemann M (2009) Coupling mode of receptors and G proteins. Naunyn Schmiedebergs Arch Pharmacol 379, 435-443.
Ferre S (2015) The GPCR heterotetramer: challenging classical pharmacology. Trends Pharmacol Sci 36, 145-152.
Qin K, Dong C, Wu G & Lambert NA (2011) Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers. Nat Chem Biol 7, 740-747.
Ayoub MA, Trinquet E, Pfleger KD & Pin JP (2010) Differential association modes of the thrombin receptor PAR1 with Galphai1, Galpha12, and beta-arrestin 1. FASEB J 24, 3522-3535.
Jang W, Adams CE, Liu H, Zhang C, Levy FO, Andressen KW & Lambert NA (2020) An inactive receptor-G protein complex maintains the dynamic range of agonist-induced signaling. Proc Natl Acad Sci USA 117, 30755-30762.
Qin K, Sethi PR & Lambert NA (2008) Abundance and stability of complexes containing inactive G protein-coupled receptors and G proteins. FASEB J 22, 2920-2927.
Dowal L, Provitera P & Scarlata S (2006) Stable association between G alpha(q) and phospholipase C beta 1 in living cells. J Biol Chem 281, 23999-24014.
Xie K, Masuho I, Shih CC, Cao Y, Sasaki K, Lai CW, Han PL, Ueda H, Dessauer CW, Ehrlich ME et al. (2015) Stable G protein-effector complexes in striatal neurons: mechanism of assembly and role in neurotransmitter signaling. Elife 4, e10451.
Wehbi VL, Stevenson HP, Feinstein TN, Calero G, Romero G & Vilardaga JP (2013) Noncanonical GPCR signaling arising from a PTH receptor-arrestin-Gbetagamma complex. Proc Natl Acad Sci USA 110, 1530-1535.
Thomsen ARB, Plouffe B, Cahill TJ III, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP et al. (2016) GPCR-G protein-beta-arrestin super-complex mediates sustained G protein signaling. Cell 166, 907-919.
Nguyen AH, Thomsen ARB, Cahill TJ III, Huang R, Huang LY, Marcink T, Clarke OB, Heissel S, Masoudi A, Ben-Hail D et al. (2019) Structure of an endosomal signaling GPCR-G protein-beta-arrestin megacomplex. Nat Struct Mol Biol 26, 1123-1131.
Zheng K, Smith JS, Warman A, Choi I, Gundry JN, Pack TF, Inoue A, Caron MG & Rajagopal S (2020) Biased agonists of the chemokine receptor CXCR3 differentially drive formation of Gαi:β-arrestin complexes. bioRxiv 2020.06.11.146605 [PREPRINT].
Johnston CA, Lobanova ES, Shavkunov AS, Low J, Ramer JK, Blaesius R, Fredericks Z, Willard FS, Kuhlman B, Arshavsky VY et al. (2006) Minimal determinants for binding activated G alpha from the structure of a G alpha(i1)-peptide dimer. Biochemistry 45, 11390-11400.
Inoue A, Raimondi F, Kadji FMN, Singh G, Kishi T, Uwamizu A, Ono Y, Shinjo Y, Ishida S, Arang N et al. (2019) Illuminating G-protein-coupling selectivity of GPCRs. Cell 177, 1933-1947, e25.
Machleidt T, Woodroofe CC, Schwinn MK, Mendez J, Robers MB, Zimmerman K, Otto P, Daniels DL, Kirkland TA & Wood KV (2015) NanoBRET-a novel BRET platform for the analysis of protein-protein interactions. ACS Chem Biol 10, 1797-1804.
Kobayashi H, Picard LP, Schonegge AM & Bouvier M (2019) Bioluminescence resonance energy transfer-based imaging of protein-protein interactions in living cells. Nat Protoc 14, 1084-1107.
Goyet E, Bouquier N, Ollendorff V & Perroy J (2016) Fast and high resolution single-cell BRET imaging. Sci Rep 6, 28231.
Thirukkumaran OM, Wang C, Asouzu NJ, Fron E, Rocha S, Hofkens J, Lavis LD & Mizuno H (2019) Improved HaloTag ligand enables BRET imaging with NanoLuc. Front Chem 7, 938.
Shintani Y, Hayata-Takano A, Moriguchi K, Nakazawa T, Ago Y, Kasai A, Seiriki K, Shintani N & Hashimoto H (2018) beta-Arrestin1 and 2 differentially regulate PACAP-induced PAC1 receptor signaling and trafficking. PLoS One 13, e0196946.
van Unen J, Stumpf AD, Schmid B, Reinhard NR, Hordijk PL, Hoffmann C, Gadella TW Jr & Goedhart J (2016) A new generation of FRET sensors for robust measurement of Galphai1, Galphai2 and Galphai3 activation kinetics in single cells. PLoS One 11, e0146789.
Lazar J, Bondar A, Timr S & Firestein SJ (2011) Two-photon polarization microscopy reveals protein structure and function. Nat Methods 8, 684-690.
Bondar A & Lazar J (2017) The G protein Gi1 exhibits basal coupling but not preassembly with G protein-coupled receptors. J Biol Chem 292, 9690-9698.
Ferrand P, Gasecka P, Kress A, Wang X, Bioud FZ, Duboisset J & Brasselet S (2014) Ultimate use of two-photon fluorescence microscopy to map orientational behavior of fluorophores. Biophys J 106, 2330-2339.
Zhanghao K, Chen X, Liu W, Li M, Liu Y, Wang Y, Luo S, Wang X, Shan C, Xie H et al. (2019) Super-resolution imaging of fluorescent dipoles via polarized structured illumination microscopy. Nat Commun 10, 4694.
Valades Cruz CA, Shaban HA, Kress A, Bertaux N, Monneret S, Mavrakis M, Savatier J & Brasselet S (2016) Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy. Proc Natl Acad Sci USA 113, E820-E828.
Axelrod D (1981) Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89, 141-145.
Soohoo AL, Bowersox SL & Puthenveedu MA (2014) Visualizing clathrin-mediated endocytosis of G protein-coupled receptors at single-event resolution via TIRF microscopy. J Vis Exp 92, e51805.
Eichel K, Jullie D, Barsi-Rhyne B, Latorraca NR, Masureel M, Sibarita JB, Dror RO & von Zastrow M (2018) Catalytic activation of beta-arrestin by GPCRs. Nature 557, 381-386.
Eichel K, Jullie D & von Zastrow M (2016) beta-Arrestin drives MAP kinase signalling from clathrin-coated structures after GPCR dissociation. Nat Cell Biol 18, 303-310.
Puthenveedu MA & von Zastrow M (2006) Cargo regulates clathrin-coated pit dynamics. Cell 127, 113-124.
Tsvetanova NG, Irannejad R & von Zastrow M (2015) G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes. J Biol Chem 290, 6689-6696.
Tokunaga M, Imamoto N & Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5, 159-161.
Godbole A, Lyga S, Lohse MJ & Calebiro D (2017) Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription. Nat Commun 8, 443.
Kempf N, Didier P, Postupalenko V, Bucher B & Mely Y (2015) Internalization mechanism of neuropeptide Y bound to its Y1 receptor investigated by high resolution microscopy. Methods Appl Fluoresc 3, 025004.
Lobingier BT & von Zastrow M (2019) When trafficking and signaling mix: how subcellular location shapes G protein-coupled receptor activation of heterotrimeric G proteins. Traffic 20, 130-136.
Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J & Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642-1645.
Scarselli M, Annibale P & Radenovic A (2012) Cell type-specific beta2-adrenergic receptor clusters identified using photoactivated localization microscopy are not lipid raft related, but depend on actin cytoskeleton integrity. J Biol Chem 287, 16768-16780.
Siddig S, Aufmkolk S, Doose S, Jobin ML, Werner C, Sauer M & Calebiro D (2020) Super-resolution imaging reveals the nanoscale organization of metabotropic glutamate receptors at presynaptic active zones. Sci Adv 6, eaay7193.
Guo M, Chandris P, Giannini JP, Trexler AJ, Fischer R, Chen J, Vishwasrao HD, Rey-Suarez I, Wu Y, Wu X et al. (2018) Single-shot super-resolution total internal reflection fluorescence microscopy. Nat Methods 15, 425-428.
Mattheyses AL, Simon SM & Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123, 3621-3628.
Lee J, Miyanaga Y, Ueda M & Hohng S (2012) Video-rate confocal microscopy for single-molecule imaging in live cells and superresolution fluorescence imaging. Biophys J 103, 1691-1697.
Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H & Johnsson K (2003) A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21, 86-89.
Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M et al. (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3, 373-382.
Calebiro D & Grimes J (2020) G protein-coupled receptor pharmacology at the single-molecule level. Annu Rev Pharmacol Toxicol 60, 73-87.
Gautier A, Juillerat A, Heinis C, Correa IR Jr, Kindermann M, Beaufils F & Johnsson K (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15, 128-136.
Sungkaworn T, Jobin ML, Burnecki K, Weron A, Lohse MJ & Calebiro D (2017) Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature 550, 543-547.
Yanagawa M, Hiroshima M, Togashi Y, Abe M, Yamashita T, Shichida Y, Murata M, Ueda M & Sako Y (2018) Single-molecule diffusion-based estimation of ligand effects on G protein-coupled receptors. Sci Signal 11, eaao1917.
Bondar A, Jang W, Sviridova E & Lambert NA (2020) Components of the Gs signaling cascade exhibit distinct changes in mobility and membrane domain localization upon beta2-adrenergic receptor activation. Traffic 21, 324-332.
Zanetti-Domingues LC, Tynan CJ, Rolfe DJ, Clarke DT & Martin-Fernandez M (2013) Hydrophobic fluorescent probes introduce artifacts into single molecule tracking experiments due to non-specific binding. PLoS One 8, e74200.
Sungkaworn T, Rieken F, Lohse MJ & Calebiro D (2014) High-resolution spatiotemporal analysis of receptor dynamics by single-molecule fluorescence microscopy. J Vis Exp 89, e51784.
Yanagawa M & Sako Y (2020) Total workflows of the single-molecule imaging analysis in living cells: a tutorial guidance to the measurement of the drug effects on a GPCR. bioRxiv 2020.06.08.141192 [PREPRINT].
Abreu N & Levitz J (2020) Optogenetic techniques for manipulating and sensing G protein-coupled receptor signaling. Methods Mol Biol 2173, 21-51.
O'Neill PR & Gautam N (2014) Subcellular optogenetic inhibition of G proteins generates signaling gradients and cell migration. Mol Biol Cell 25, 2305-2314.
Hannanta-Anan P & Chow BY (2016) Optogenetic control of calcium oscillation waveform defines NFAT as an integrator of calcium load. Cell Syst 2, 283-288.
Yu G, Onodera H, Aono Y, Kawano F, Ueda Y, Furuya A, Suzuki H & Sato M (2016) Optical manipulation of the alpha subunits of heterotrimeric G proteins using photoswitchable dimerization systems. Sci Rep 6, 35777.
Garcia-Marcos M, Parag-Sharma K, Marivin A, Maziarz M, Luebbers A & Nguyen LT (2020) Optogenetic activation of heterotrimeric G-proteins by LOV2GIVe, a rationally engineered modular protein. Elife 9, e60155.
Huang C, Hepler JR, Chen LT, Gilman AG, Anderson RG & Mumby SM (1997) Organization of G proteins and adenylyl cyclase at the plasma membrane. Mol Biol Cell 8, 2365-2378.
Harmsen M & De Haard H (2007) Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 77, 13-22.
Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS et al. (2011) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469, 175-180.
De Groof TWM, Bobkov V, Heukers R & Smit MJ (2019) Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Mol Cell Endocrinol 484, 15-24.
Gormal RS, Padmanabhan P, Kasula R, Bademosi AT, Coakley S, Giacomotto J, Blum A, Joensuu M, Wallis TP, Lo HP et al. (2020) Modular transient nanoclustering of activated beta2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proc Natl Acad Sci USA 117, 30476-30487.
Gulati S, Jin H, Masuho I, Orban T, Cai Y, Pardon E, Martemyanov KA, Kiser PD, Stewart PL, Ford CP et al. (2018) Targeting G protein-coupled receptor signaling at the G protein level with a selective nanobody inhibitor. Nat Commun 9, 1996.
Gao Y, Hu H, Ramachandran S, Erickson JW, Cerione RA & Skiniotis G (2019) Structures of the rhodopsin-transducin complex: insights into G-protein activation. Mol Cell 75, 781-790, e3.
Nehme R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF, Du H, Grisshammer R & Tate CG (2017) Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS One 12, e0175642.
Wan Q, Okashah N, Inoue A, Nehme R, Carpenter B, Tate CG & Lambert NA (2018) Mini G protein probes for active G protein-coupled receptors (GPCRs) in live cells. J Biol Chem 293, 7466-7473.
Horing C, Seibel U, Tropmann K, Gratz L, Monnich D, Pitzl S, Bernhardt G, Pockes S & Strasser A (2020) A dynamic, split-luciferase-based mini-G protein sensor to functionally characterize ligands at all four histamine receptor subtypes. Int J Mol Sci 21, 8440-8458.
Nash CA, Wei W, Irannejad R & Smrcka AV (2019) Golgi localized beta1-adrenergic receptors stimulate Golgi PI4P hydrolysis by PLCepsilon to regulate cardiac hypertrophy. Elife 8, e48167.
Mo GC, Ross B, Hertel F, Manna P, Yang X, Greenwald E, Booth C, Plummer AM, Tenner B, Chen Z et al. (2017) Genetically encoded biosensors for visualizing live-cell biochemical activity at super-resolution. Nat Methods 14, 427-434.
Koyama-Honda I, Ritchie K, Fujiwara T, Iino R, Murakoshi H, Kasai RS & Kusumi A (2005) Fluorescence imaging for monitoring the colocalization of two single molecules in living cells. Biophys J 88, 2126-2136.
Sun F, Zeng J, Jing M, Zhou J, Feng J, Owen SF, Luo Y, Li F, Wang H, Yamaguchi T et al. (2018) A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481-496, e19.
Wu Z, Feng J, Jing M & Li Y (2019) G protein-assisted optimization of GPCR-activation based (GRAB) sensors. In Neural Imaging and Sensing. Vol. 10865, p. 108650N.
Ravotto L, Duffet L, Zhou X, Weber B & Patriarchi T (2020) A bright and colorful future for G-protein coupled receptor sensors. Front Cell Neurosci 14, 67.
Cottet M, Albizu L, Comps-Agrar L, Trinquet E, Pin JP, Mouillac B & Durroux T (2011) Time resolved FRET strategy with fluorescent ligands to analyze receptor interactions in native tissues: application to GPCR oligomerization. Methods Mol Biol 746, 373-387.
Tontson L, Kopanchuk S & Rinken A (2013) Biarsenical ligands bind to endogenous G-protein alpha-subunits and enable allosteric sensing of nucleotide binding. BMC Biochem 14, 37.
Hynes TR, Mervine SM, Yost EA, Sabo JL & Berlot CH (2004) Live cell imaging of Gs and the beta2-adrenergic receptor demonstrates that both alphas and beta1gamma7 internalize upon stimulation and exhibit similar trafficking patterns that differ from that of the beta2-adrenergic receptor. J Biol Chem 279, 44101-44112.
Hynes TR, Tang L, Mervine SM, Sabo JL, Yost EA, Devreotes PN & Berlot CH (2004) Visualization of G protein betagamma dimers using bimolecular fluorescence complementation demonstrates roles for both beta and gamma in subcellular targeting. J Biol Chem 279, 30279-30286.
Hynes TR, Yost EA, Yost SM & Berlot CH (2011) Multicolor BiFC analysis of G protein betagamma complex formation and localization. Methods Mol Biol 756, 229-243.
Jonas KC & Hanyaloglu AC (2019) Analysis of spatial assembly of GPCRs using photoactivatable dyes and localization microscopy. Methods Mol Biol 1947, 337-348.