Dynamic Gene-Resource Landscape Management of Norway Spruce: Combining Utilization and Conservation

. 2017 ; 8 () : 1810. [epub] 20171018

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29093732

Traditional gene-resource management programs for forest trees are long-term endeavors requiring sustained organizational commitment covering extensive landscapes. While successful in maintaining adaptation, genetic diversity and capturing traditional growth attributes gains, these programs are dependent on rigid methods requiring elaborate mating schemes, thus making them slow in coping with climate change challenges. Here, we review the significance of Norway spruce in the boreal region and its current management practices. Next, we discuss opportunities offered by novel technologies and, with the use of computer simulations, we propose and evaluate a dynamic landscape gene-resource management in Norway. Our suggested long-term management approach capitalizes on: (1) existing afforestation activities, natural crosses, and DNA-based pedigree assembly to create structured pedigree for evaluation, thus traditional laborious control crosses are avoided and (2) landscape level genetic evaluation, rather than localized traditional progeny trials, allowing for screening of adapted individuals across multiple environmental gradients under changing climate. These advantages lead to greater genetic response to selection in adaptive traits without the traditional breeding and testing scheme, facilitating conservation of genetic resources within the breeding population of the most important forest tree species in Norway. The use of in situ selection from proven material exposed to realistic conditions over vast territories has not been conducted in forestry before. Our proposed approach is in contrast to worldwide current programs, where genetic evaluation is constrained by the range of environments where testing is conducted, which may be insufficient to capture the broad environmental variation necessary to tackle adaptation under changing climate.

Zobrazit více v PubMed

Alfaro R. I., Fady B., Vendramin G. G., Dawson I. K., Fleming R. A., Sáenz-Romero C., et al. (2014). The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. For. Ecol. Manage. 333 76–87. 10.1016/j.foreco.2014.04.006 DOI

Allendorf F. W. (1986). Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol. 5 181–190. 10.1002/zoo.1430050212 DOI

Birdal A. C., Avdan U., Türk T. (2017). Estimating tree heights with images from an unmanned aerial vehicle. Geomatics Nat. Hazards Risk 1–13. 10.1080/19475705.2017.1300608 DOI

Chen C., Mitchell S. E., Elshire R. J., Buckler E. S., El-Kassaby Y. A. (2013). Mining conifers’ mega-genome using rapid and efficient multiplexed high-throughput genotyping-by-sequencing (GBS) SNP discovery platform. Tree Genet. Genomes 9 1537–1544. 10.1007/s11295-013-0657-1 DOI

Chen Z. Q., Karlsson B., Wu H. X. (2017). Patterns of additive genotype-by-environment interaction in tree height of Norway spruce in southern and central Sweden. Tree Genet. Genomes 13 25 10.1007/s11295-017-1103-6 DOI

Danell Ö. (1991). Survey of past, current and future Swedish forest tree breeding. Silvae Fenn. 25 241–247. 10.14214/sf.a15621 DOI

Edvardsen O. M., Steffenrem A., Johnskås O. R., Johnsen Ø., Myking T., Kvaalen H. (2010). Strategi for Skogplanteforedling 2010-2040 (høringsutkast). [Strategy for tree breeding 2010-2040 (proposal)]. (Hamar: The Norwegian Forest Seed Center; ) 28.

El-Dien O. G., Ratcliffe B., Klápště J., Porth I., Chen C., El-Kassaby Y. A. (2016). Implementation of the realized genomic relationship matrix to open-pollinated white spruce family testing for disentangling additive from nonadditive genetic effects. G3 6 743–753. 10.1534/g3.115.025957 PubMed DOI PMC

El-Kassaby Y. A., Cappa E. P., Liewlaksaneeyanawin C., Klápště J., Lstibůrek M. (2011). Breeding without breeding: is a complete pedigree necessary for efficient breeding? PLOS ONE 6:e25737. 10.1371/journal.pone.0025737 PubMed DOI PMC

El-Kassaby Y. A., Lstibůrek M. (2009). Breeding without breeding. Genet. Res. 91 111–120. 10.1017/S001667230900007X PubMed DOI

Gilmour A. R., Gogel B. J., Cullis B. R., Thompson R. (2009). ASReml User Guide Release 3.0. Hemel Hempstead: VSN International Ltd.

Grattapaglia D., Resende M. D. (2011). Genomic selection in forest tree breeding. Tree Genet. Genomes 7 241–255. 10.1007/s11295-010-0328-4 DOI

Haapanen M., Mikola J. (2008). “Forest tree breeding 2050,” in Proceedings of the Finnish Forest Research Institute 71: Finland’s Long-Term Tree Breeding Program. Helsinki: Finnish Forest Research Institute.

Hartl D. L., Clark A. G. (2007). Principles of Population Genetics. Sunderland, MA: Sinauer.

Hayes B. J., Bowman P. J., Chamberlain A. J., Goddard M. E. (2009). Invited review: genomic selection in dairy cattle: progress and challenges. J. Dairy Sci. 92 433–443. 10.3168/jds.2008-1646 PubMed DOI

Henderson C. R. (1976). A simple method for computing the inverse of a numerator relationship matrix used in prediction of breeding values. Biometrics 32 69–83. 10.1186/1297-9686-41-25 PubMed DOI PMC

Ingvarsson P. K., Street N. R. (2011). Association genetics of complex traits in plants. New Phytol. 189 909–922. 10.1111/j.1469-8137.2010.03593.x PubMed DOI

Jansson G., Hansen J. K., Haapanen M., Kvaalen H., Steffenrem A. (2016). The genetic and economic gains from forest tree breeding programmes in Scandinavia and Finland. Scand. J. For. Res. 32 273–286. 10.1080/02827581.2016.1242770 DOI

Langvall O. (2011). Impact of climate change, seedling type and provenance on the risk of damage to Norway spruce (Picea abies (L.) Karst.) seedlings in Sweden due to early summer frosts. Scand. J. For. Res. 26 56–63. 10.1080/02827581.2011.564399 DOI

Lefèvre F., Koskela J., Hubert J., Kraigher H., Longauer R., Olrik D. C., et al. (2013). Dynamic conservation of forest genetic resources in 33 European countries. Conserv. Biol. 27 373–384. 10.1111/j.1523-1739.2012.01961.x PubMed DOI

Lindgren D., Mullin T. J. (1997). Balancing gain and relatedness in selection. Silvae Genet. 46 124–128.

Lstibůrek M., Hodge G. R., Lachout P. (2015). Uncovering genetic information from commercial forest plantations—making up for lost time using “breeding without breeding”. Tree Genet. Genomes 11 55 10.1007/s11295-015-0881-y DOI

Lstibůrek M., Ivanková K., Kadlec J., Kobliha J., Klápště J., El-Kassaby Y. A. (2011). Breeding without breeding: minimum fingerprinting effort with respect to the effective population size. Tree Genet. Genomes 7 1069–1078. 10.1007/s11295-011-0395-1 DOI

Lstibůrek M., Klápště J., Kobliha J., El-Kassaby Y. A. (2012). Breeding without breeding: effect of gene flow on fingerprinting effort. Tree Genet. Genomes 8 873–877. 10.1007/s11295-012-0472-0 DOI

Meuwissen T. H. E., Hayes B. J., Goddard M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics 157 1819–1829. PubMed PMC

Muranty H., Jorge V., Bastien C., Lepoittevin C., Bouffier L., Sanchez L. (2014). Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet. Genomes 10 1491–1510. 10.1007/s11295-014-0790-5 DOI

Myking T., Rusanen M., Steffenrem A., Kjær E. D., Jansson G. (2016). Historic transfer of forest reproductive material in the Nordic region: drivers, scale and implications. Forestry 89 325–337. 10.1093/forestry/cpw020 DOI

Namkoong G. (1979). “Introduction to quantitative genetics in forestry,” in USDA Forest Service Bulletin No. 1588 Washington, DC: USDA Forest Service; 342.

Neves L. G., Davis J. M., Barbazuk W. B., Kirst M. (2013). Whole-exome targeted sequencing of the uncharacterized pine genome. Plant J. 75 146–156. 10.1111/tpj.12193 PubMed DOI

Nystedt B., Street N. R., Wetterbom A., Zuccolo A., Lin Y.-C., Scofield D. G., et al. (2013). The Norway spruce genome sequence and conifer genome evolution. Nature 497 579–584. 10.1038/nature12211 PubMed DOI

Parducci L., Edwards M. E., Bennett K. D., Alm T., Elverland E., Tollefsrud M. M., et al. (2012a). Response to comment on “Glacial survival of boreal trees in northern Scandinavia”. Science 338 742 10.1126/science.1225476 PubMed DOI

Parducci L., Jørgensen T., Tollefsrud M. M., Elverland E., Alm T., Fontana S. L., et al. (2012b). Glacial survival of boreal trees in Northern Scandinavia. Science 335 1083–1086. 10.1126/science.1216043 PubMed DOI

Savill P., Evans J., Auclair D., Falck J. (1997). Plantation Silviculture in Europe. Oxford: Oxford University Press.

Skrøppa T., Steffenrem A. (2015). Selection in a provenance trial of Norway spruce (Picea abies L. Karst) produced a land race with desirable properties. Scand. J. For. Res. 31 439–449. 10.1080/02827581.2015.1081983 DOI

Solberg S., Naesset E., Bollandsas O. M. (2006). Single tree segmentation using airborne laser scanner data in a structurally heterogeneous spruce forest. Photogramm. Eng. Remote Sensing 72 1369–1378. 10.14358/PERS.72.12.1369 DOI

Steffenrem A., Lohne T. P., Kvaalen H., Solberg S. (2014). “Tree height estimation in progeny trials using UAS photogrammetry,” in Proceedings of the 2014 IUFRO Forest Tree Breeding Conference Prague.

Steffenrem A., Solheim H., Skrøppa T. (2016). Genetic parameters for wood quality traits and resistance to the pathogens Heterobasidion parviporum and Endoconidiophora polonica in a Norway spruce breeding population. Eur. J. For. Res. 135 815–825. 10.1007/s10342-016-0975-6 DOI

Tollefsrud M. M., Kissling R., Gugerli F., Johnsen Ø., Skrøppa T., Cheddadi R., et al. (2008). Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen. Mol. Ecol. 17 4134–4150. 10.1111/j.1365-294X.2008.03893.x PubMed DOI

White T., Adams W. T., Neale D. B. (2007). Forest genetics. Wallingford: CABI; 10.1079/9781845932855.0000 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...