Effect of climate on traits of dominant and rare tree species in the world's forests
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
40404639
PubMed Central
PMC12098762
DOI
10.1038/s41467-025-59754-7
PII: 10.1038/s41467-025-59754-7
Knihovny.cz E-zdroje
- MeSH
- dřevo MeSH
- druhová specificita MeSH
- ekosystém MeSH
- klimatické změny MeSH
- lesy * MeSH
- podnebí * MeSH
- stromy * fyziologie klasifikace anatomie a histologie MeSH
- teplota MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- voda MeSH
Species' traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.
All Russian Institute of Continuous Education in Forestry Pushkino Russian Federation
AMAP Univ Montpellier CIRAD CNRS INRAE IRD Montpellier France
Andes to Amazon Biodiversity Program Madre de Dios Peru
Bauman Moscow State Technical University Mytischi Russian Federation
Bavarian State Institute of Forestry Freising Germany
Biological Institute Tomsk State University Tomsk Russia
Center for Forest Ecology and Productivity Russian Academy of Sciences Moscow Russia
Center for Tropical Research Institute of the Environment and Sustainability UCLA Los Angeles CA USA
Centre for Agricultural Research in Suriname Paramaribo Suriname
Centre for Conservation Science The Royal Society for the Protection of Birds Sandy UK
Centre for Forest Research Université du Québec à Montréal Montréal QC Canada
Centro Agricoltura Alimenti Ambiente University of Trento San Michele all'Adige Italy
Centro de Ciências Biológicas e da Natureza Universidade Federal do Acre Rio Branco Acre Brazil
Centro de Modelación y Monitoreo de Ecosistemas Universidad Mayor Santiago Chile
Centro Multidisciplinar Universidade Federal do Acre Rio Branco Brazil
CIRAD Forêts et Sociétés Montpellier France
Cirad UMR EcoFoG Kourou French Guiana
Climate Fire and Carbon Cycle Sciences USDA Forest Service Durham NC USA
Colegio de Ciencias y Humanidades Universidad Juárez del Estado de Durango Durango Mexico
Colegio de Profesionales Forestales de Cochabamba Cochabamba Bolivia
Compensation International S A Ci Progress GreenLife Bogotá D C Colombia
CTFS ForestGEO Smithsonian Tropical Research Institute Balboa Panama
Departamento de Biología Universidad de la Serena La Serena Chile
Departamento de Ecologia Universidade Federal do Rio Grande do Norte Natal Brazil
Departamento de Silvicultura y Conservación de la Naturaleza Universidad de Chile Santiago Chile
Department of Agricultural and Forest Sciences and Engineering University of Lleida Lleida Spain
Department of Agricultural Food Environmental and Animal Sciences University of Udine Udine Italy
Department of Agriculture Food Environment and Forest University of Firenze Florence Italy
Department of Agriculture Forestry and Bioresources Seoul National University Seoul South Korea
Department of Biological Sciences Boise State University Boise ID USA
Department of Biology Stanford University Stanford CA USA
Department of Biology University of Florence Florence Italy
Department of Biology University of Missouri St Louis St Louis MO USA
Department of Biology West Virginia University Morgantown WV USA
Department of Botany Dr Harisingh Gour Vishwavidyalaya Sagar MP India
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Department of Ecology and Environmental Sciences Pondicherry University Puducherry India
Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
Department of Environment and Development Studies United International University Dhaka Bangladesh
Department of Environment and Geography University of York York UK
Department of Environmental Sciences Central University of Jharkhand Ranchi India
Department of Evolutionary Anthropology Duke University Durham NC USA
Department of Evolutionary Biology and Environmental Studies University of Zürich Zürich Switzerland
Department of Forest and Wood Science University of Stellenbosch Stellenbosch South Africa
Department of Forest Engineering Universidade Regional de Blumenau Blumenau Santa Catarina Brazil
Department of Forest Resources University of Minnesota St Paul MN USA
Department of Forest Science Tokyo University of Agriculture Tokyo Japan
Department of Forestry and Natural Resources Purdue University West Lafayette IN USA
Department of Genetics Evolution and Environment University College London London UK
Department of Geographical Sciences University of Maryland College Park MD USA
Department of Geography University College London London UK
Department of Geomatics Forest Research Institute Raszyn Poland
Department of Natural Sciences Manchester Metropolitan University Manchester UK
Department of Physical and Biological Sciences The College of Saint Rose Albany NY USA
Department of Physical and Environmental Sciences Colorado Mesa University Grand Junction CO USA
Department of Plant Biology Institute of Biology University of Campinas UNICAMP Campinas Brazil
Department of Plant Sciences University of Oxford Oxford UK
Department of Plant Systematics University of Bayreuth Bayreuth Germany
Department of Spatial Regulation GIS and Forest Policy Institute of Forestry Belgrade Serbia
Department of Wildlife Management College of African Wildlife Management Mweka Tanzania
Department of Zoology University of Oxford Oxford UK
Division of Forest and Forest Resources Norwegian Institute of Bioeconomy Research Ås Norway
Division of Forest Resources Information Korea Forest Promotion Institute Seoul South Korea
Division of Forestry and Natural Resources West Virginia University Morgantown WV USA
Ecole de Foresterie et Ingénierie du Bois Université Nationale d'Agriculture Ketou Benin
Environmental Studies and Research Center University of Campinas UNICAMP Campinas Brazil
European Commission Joint Research Centre Ispra Italy
Facultad de Ciencias Forestales Universidad Juárez del Estado de Durango Durango Mexico
Faculty of Biology Białowieża Geobotanical Station University of Warsaw Białowieża Poland
Faculty of Biology Geobotany University of Freiburg Freiburg im Breisgau Germany
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Faculty of Forestry Qingdao Agricultural University Qingdao China
Faculty of Natural Resources Management Lakehead University Thunder Bay ON Canada
Faculty of Science and Technology Free University of Bolzano Bolzano Italy
Field Museum of Natural History Chicago IL USA
Flamingo Land Ltd Kirby Misperton UK
Forest Research Institute Malaysia Kuala Lumpur Malaysia
Forest Science and Technology Centre of Catalonia Solsona Spain
Forestry Division Food and Agriculture Organization of the United Nations Rome Italy
Forestry School Tecnológico de Costa Rica TEC Cartago Costa Rica
Forêts et Sociétés Univ Montpellier CIRAD Montpellier France
Fundacion ConVida Universidad Nacional Abierta y a Distancia UNAD Medellin Colombia
Gembloux Agro Bio Tech University of Liege Liege Belgium
Geography College of Life and Environmental Sciences University of Exeter Exeter UK
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Global Change Research Institute CAS Brno Czech Republic
Graduate School of Agriculture Kyoto University Kyoto Japan
Guyana Forestry Commission Georgetown French Guiana
Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
IFER Institute of Forest Ecosystem Research Jilove u Prahy Czech Republic
INP HB UMRI Sciences Agronomiques et Procédés de Transformation Yamoussoukro Côte d'Ivoire
Institute for World Forestry University of Hamburg Hamburg Germany
Institute of Botany The Czech Academy of Sciences 25243 Průhonice Czech Republic
Institute of Dendrology Polish Academy of Sciences Kórnik Poland
Institute of Forestry and Rural Engineering Estonian University of Life Sciences Tartu Estonia
Institute of Forestry Belgrade Serbia
Institute of Integrative Biology ETH Zurich Zurich Switzerland
Institute of Plant Sciences University of Bern Bern Switzerland
Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
Instituto Nacional de Tecnología Agropecuaria Rio Gallegos Argentina
International Institute for Applied Systems Analysis Laxenburg Austria
IRET Herbier National du Gabon Libreville Gabon
Isotope Bioscience Laboratory ISOFYS Ghent University Ghent Belgium
Iwokrama International Centre for Rainforest Conservation and Development Georgetown Guyana
Jardín Botánico de Medellín Medellín Colombia
Jardín Botánico de Missouri Oxapampa Peru
LINCGlobal Museo Nacional de Ciencias Naturales CSIC Madrid Spain
Manaaki Whenua Landcare Research Lincoln New Zealand
Museo de Historia natural Noel kempff Mercado Santa Cruz Bolivia
Museu Paraense Emílio Goeldi Coordenação de Ciências da Terra e Ecologia Belém Pará Brasil
National Center for Agro Meteorology Seoul South Korea
National Forest Centre Forest Research Institute Zvolen Zvolen Slovakia
National Institute of Amazonian Research Manaus Brazil
Natural Resources Institute Finland Joensuu Finland
Natural Science Department Universidade Regional de Blumenau Blumenau Brazil
Naturalis Biodiversity Centre Leiden The Netherlands
Nicholas School of the Environment Duke University Durham NC USA
Polish State Forests Coordination Center for Environmental Projects Warsaw Poland
Pontificia Universidad Católica del Ecuador Quito Ecuador
Poznań University of Life Sciences Department of Game Management and Forest Protection Poznań Poland
Proceedings of the National Academy of Sciences Washington DC USA
Quantitative Biodiversity Dynamics Department of Biology Utrecht University Utrecht The Netherlands
Queensland Herbarium Department of Environment and Science Toowong QL Australia
Research and Innovation Center Fondazione Edmund Mach San Michele all'Adige Italy
Research Institute for Agriculture and Life Sciences Seoul National University Seoul South Korea
Royal Botanic Garden Edinburgh Edinburgh UK
School of Biological and Behavioural Sciences Queen Mary University of London London UK
School of Biological Sciences University of Bristol Bristol UK
School of Forestry and Environmental Studies Yale University New Haven CT USA
School of Geography and Sustainable Development University of St Andrews St Andrews UK
School of Geography University of Leeds Leeds UK
School of Geography University of Oxford Oxford UK
School of Social Sciences Western Sydney University Penrith NSW Australia
Section for Ecoinformatics and Biodiversity Department of Biology Aarhus University Aarhus Denmark
Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany
Silviculture Research Institute Vietnamese Academy of Forest Sciences Hanoi Vietnam
Stefan cel Mare University of Suceava Suceava Romania
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
The Santa Fe Institute Santa Fe NM USA
Theoretical Ecology Unit African Institute for Mathematical Sciences Cape Town South Africa
Tropenbos International Wageningen The Netherlands
Tropical Biodiversity MUSE Museo delle Scienze Trento Italy
UFR Biosciences University Félix Houphouët Boigny Abidjan Côte d'Ivoire
UMR EcoFoG AgroParisTech Kourou France
UNELLEZ Guanare Programa de Ciencias del Agro y el Mar Herbario Universitario Portuguesa Venezuela
UniSA STEM and Future Industries Institute University of South Australia Adelaide SA Australia
United Nation Framework Convention on Climate Change Bonn Germany
Universidad del Tolima Ibagué Colombia
Universidad Estatal Amazónica Puyo Pastaza Ecuador
Universidad Nacional de la Amazonía Peruana Iquitos Peru
Universidad Nacional de San Antonio Abad del Cusco Cusco Peru
Université de Lorraine AgroParisTech Inra Silva Nancy France
Vicerrectoría de Investigación y Postgrado Universidad de La Frontera Temuco Chile
Wageningen University and Research Wageningen The Netherlands
Zobrazit více v PubMed
Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun.6, 1–9 (2015). PubMed PMC
Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol.86, 902–910 (1998).
Jain, M. et al. The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4, 104–112 (2014). PubMed PMC
Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. Mace G. M., editor. PLoS Biol. 11, e1001569 (2013). PubMed PMC
HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst.43, 227–248 (2012).
Kutzbach, J. et al. Climate and Biome simulations for the past 21,000 years. Quat. Sci. Rev.17, 473–506 (1998).
Woodward, F. I., Lomas, M. R. & Kelly, C. K. Global climate and the distribution of plant biomes. Philos. Trans. R. Soc. B: Biol. Sci.359, 1465–1476 (2004). PubMed PMC
Kirschbaum, M. U. F. Forest growth and species distribution in a changing climate. Tree Physiol.20, 309–322 (2000). PubMed
Woodward, F. I. Climate and plant distribution. Cambridge University Press. (1987).
Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol.6, 36–50 (2022). PubMed PMC
Kühn, N. et al. Globally important plant functional traits for coping with climate change. Front Biogeogr.13, 1–18 (2021).
Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep.8, 2870 (2018). PubMed PMC
Avolio, M. L. et al. Demystifying dominant species. N. Phytol. 223, 1106–1126 (2019). PubMed
Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol.2, 1906–1917 (2018). PubMed
Weiher, P., Keddy, E. Ecological assembly rules: perspectives, advances, retreats [Internet]. Cambridge University Press; 2001. Available from: https://books.google.co.in/books?hl=en&lr=&id=RIZDYJ0zKaAC&oi=fnd&pg=PR12&dq=Wilson,+J.+B.++(1999a).+Assembly+rules+in+plant+communities.+Ecological+Assembly+Rules:+Perspectives,+Advances,+Retreats+(eds+E.+Weiher+and+P.+A.+Keddy),+pp.+130%E2%80%93164.+Cambri&redir_esc=y#v=onepage&q&f=false.
Hulshof, C. M. et al. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. de Bello F., editor. J. Veg. Sci.24, 921–931 (2013).
Whittaker, R. H. Dominance and diversity in land plant communities. Science147, 250–260 (1965). PubMed
Violle, C. et al. Let the concept of trait be functional! Oikos [Internet]. 116, 882–892 (2007).
Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature. 529, 204–207 (2016). PubMed
Aiba, M. & Nakashizuka, T. Architectural differences associated with adult stature and wood density in 30 temperate tree species. Funct. Ecol.23, 265–273 (2009).
Poorter, L., Bongers, L. & Bongers, F. Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecol. Soc. Am.87, 1289–1301 (2016). PubMed
Wright, S. J. et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology. 91, 3664–3474 (2010). PubMed
Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res.25, 693–714 (2010).
Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. N. Phytol.182, 565–588 (2009). PubMed
Moles, A. T. et al. Which is a better predictor of plant traits: Temperature or precipitation? J. Veg. Sci.25, 1167–1180 (2014).
Harrison, S. P. et al. Ecophysiological and bioclimatic foundations for a global plant functional classification. J. Veg. Sci.21, 300–317 (2010).
Lambers, H., Chapin, F. S., Pons, T. L. Leaf Energy Budgets: Effects of Radiation and Temperature. In: Plant Physiological Ecology., 210–229. (1998).
Went, F. W. The effect of temperature on plant growth. Annu. Rev. Plant Physiol.4, 347–362 (1953).
Murray, B. R., Brown, A. H. D., Dickman, C. R. & Crowther, M. S. Geographical gradients in seed mass in relation to climate. J. Biogeogr.31, 379–388 (2004).
Swenson, N. G., Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451–459 (2007). PubMed
O’Brien, M. J. et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol.54, 1669–1686 (2017).
Wright, I. J., Reich, P. B. & Westoby, M. Least-cost input mixtures of water and nitrogen for photosynthesis. Am. Nat.161, 98–111 (2003). PubMed
Lintunen, A., Hölttä, T. & Kulmala, M. Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress. Sci. Rep.3, 2031 (2013). PubMed PMC
Pollastrini, M., Puletti, N., Selvi, F., Iacopetti, G. & Bussotti, F. Widespread crown defoliation after a drought and heat wave in the forests of Tuscany (Central Italy) and their recovery—a case study from summer 2017. Front Glob. Chang.2, 74 (2019).
Ruehr, N. K., Gast, A., Weber, C., Daub, B. & Arneth, A. Water availability as dominant control of heat stress responses in two contrasting tree species. Tree Physiol.36, 164–178 (2015). PubMed
Magurran, A. E., Henderson, P. A. Explaining the excess of rare species in natural species abundance distributions. Nature. 422, 714–716 (2003). PubMed
Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol.34, 746–758 (2019). PubMed
Hermy, M. & Verheyen, K. Legacies of the past in the present-day forest biodiversity: A review of past land-use effects on forest plant species composition and diversity. Ecol. Res.22, 361–371 (2007).
Roosevelt, A. C. The Amazon and the Anthropocene: 13,000 years of human influence in a tropical rainforest. Anthropocene4, 69–87 (2013).
Wiens, J. J. The niche, biogeography and species interactions. Philos. Trans. R. Soc. B: Biol. Sci.366, 2336–2350 (2011). PubMed PMC
Hubbell, S. P., Foster, R. B. Commonness and rarity in a neotropical forest: implications for tropical tree conservation. In: Soulé ME (ed) Conservation biology. Sunderland: Sinauer asociates; 1986. p. 205–231.
Markham, J. Rare species occupy uncommon niches. Sci.4, 6012 (2014). PubMed PMC
Maire, V. et al. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol. 196, 497–509. (2012). PubMed
Díaz, S. et al. The global spectrum of plant form and function. Nature. 529, 167–171 (2016). PubMed
Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun.13, 3185 (2022). PubMed PMC
Coomes, D. A. & Allen, R. B. Effects of size, competition and altitude on tree growth. J. Ecol.95, 1084–1097 (2007).
Li, W. et al. Human fingerprint on structural density of forests globally. Nat. Sustain6, 368–379 (2023).
Rüger, N. et al. Successional shifts in tree demographic strategies in wet and dry Neotropical forests. Glob. Ecol. Biogeogr.32, 1002–1014 (2023).
Draper, F. C. et al. Amazon tree dominance across forest strata. Nat. Ecol. Evol.5, 757–767 (2021). PubMed
King, D. A., Wright, S. J. & Connell, J. H. The contribution of interspecific variation in maximum tree height to tropical and temperate diversity. J. Trop. Ecol.22, 11–24 (2006).
Boyce, A. J., Shakya, S., Sheldon, F. H., Moyle, R. G., Martin, T. E. Biotic interactions are the dominant drivers of phylogenetic and functional structure in bird communities along a tropical elevational gradient. Auk. 136, ukz054 (2019).
Miller, E. T. et al. Fighting over food unites the birds of North America in a continental dominance hierarchy. Stephens D., editor. Behav. Ecol.28, 1454–1463 (2017).
Delgado-baquerizo, M. et al. A Gobal Atlas of the dominant bacteria found in soil. Science.325, 320–325 (2018). PubMed
Dalerum, F., Cameron, E. Z., Kunkel, K. & Somers, M. J. Interactive effects of species richness and species traits on functional diversity and redundancy. Theor. Ecol.5, 129–139 (2012).
Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol.89, 118–125 (2001).
Monge-González, M. L., Guerrero-Ramírez, N., Krömer, T., Kreft, H. & Craven, D. Functional diversity and redundancy of tropical forests shift with elevation and forest-use intensity. J. Appl. Ecol., Biodivers. Data J.58, 1827–1837 (2021). PubMed PMC
Zhang, S., Zang, R. & Sheil, D. Rare and common species contribute disproportionately to the functional variation within tropical forests. J. Environ. Manag.304, 114332 (2022). PubMed
Reich, P. B. et al. The evolution of plant functional variation: Traits, spectra, and strategies. Int. J. Plant Sci.164, S143–S164 (2003).
Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst.39, 237–257 (2008).
Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett.20, 539–553 (2017). PubMed
Legner, N., Fleck, S. & Leuschner, C. Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance. Trees - Struct. Funct.28, 263–280 (2014).
Ramírez-Valiente, J. A. & Cavender-Bares, J. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). Tree Physiol.37, 889–901 (2017). PubMed
Finér, L. et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst.141, 394–405 (2007).
Loram-Lourenço, L. et al. A structure shaped by fire, but also water: ecological consequences of the variability in bark properties across 31 species from the Brazilian Cerrado. Front. Plant Sci.10, 1718 (2020). PubMed PMC
Yang, S. et al. Stem Trait Spectra underpin multiple functions of temperate tree species. Front. Plant Sci.13, 769551 (2022). PubMed PMC
Boulangeat, I., Lavergne, S., Van Es, J., Garraud, L. & Thuiller, W. Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. J. Biogeogr.39, 204–214 (2012).
Cai, H., Li, F. & Jin, G. Forest strata-dependent effects of vegetation attributes and soil nutrients on decadal changes in aboveground net carbon stock in two temperate forests. Catena194, 104776 (2020).
Crivellaro, A., Piermattei, A., Dolezal, J., Dupree, P. & Büntgen, U. Biogeographic implication of temperature-induced plant cell wall lignification. Commun. Biol.5, 767 (2022). PubMed PMC
Song, Y., Poorter, L., Horsting, A., Delzon, S. & Sterck, F. Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species. J. Exp. Bot.73, 1033–1048 (2022). PubMed PMC
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature428, 821–827 (2004). PubMed
Adler, R. F., Gu, G., Sapiano, M., Wang, J. J. & Huffman, G. J. Global precipitation: means, variations and trends during the satellite era (1979–2014). Surv. Geophys.38, 1–21 (2017).
Liang, J. et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat. Ecol. Evol.6, 1423–1437 (2022). PubMed
Rind, D. Latitudinal temperature gradients and climate change. J. Geophys. Res Atmos.103, 5943–5971 (1998).
Yamahira, K. & Conover, D. O. Intra- vs. interspecific latitudinal variation in growth: Adaptation to temperature or seasonality? Ecology83, 1252–1262 (2002).
Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci.6, 547 (2015). PubMed PMC
Poorter, H. et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. N. Phytologist193, 30–50 (2012). PubMed
Lamanna, C. et al. Functional trait space and the latitudinal diversity gradient. Proc. Natl Acad. Sci.111, 13745–13750 (2014). PubMed PMC
Hordijk, I. et al. Evenness mediates the global relationship between forest productivity and richness. J. Ecol.111, 1308–1326 (2023).
Khaine, I. et al. Species diversity, stand structure, and species distribution across a precipitation gradient in tropical forests in Myanmar. Forests8, 282 (2017).
Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science354, aaf8957 (2016). PubMed
Weemstra, M. et al. The role of fine-root mass, specific root length and life span in tree performance: A whole-tree exploration. Funct. Ecol.34, 575–585 (2020).
Olson, M. E., Anfodillo, T., Gleason, S. M. & McCulloh, K. A. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. N. Phytol.229, 1877–1893 (2021). PubMed
Goorman, R., Bartual, A., Paula, S. & Ojeda, F. Enhancement of photosynthesis in post-disturbance resprouts of two co-occurring Mediterranean Erica species. Plant Ecol.212, 2023–2033 (2011).
Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. Sci.63, 625–644 (2006).
Lohbeck, M., Poorter, L., Mart, M. & Rodriguez-, J. Changing drivers of species dominance during tropical forest succession. Funct. Ecol.27, 1052–1058 (2014).
van Der Sande, M. T. et al. Tropical forest succession increases tree taxonomic and functional richness but decreases evenness. Glob. Ecol. Biogeogr. (2024).
Karadimou. E. K., Kallimanis, A. S., Tsiripidis, I., Dimopoulos, P. Functional diversity exhibits a diverse relationship with area, even a decreasing one. Sci. Rep. 6, 35420 (2016). PubMed PMC
Poulter. B. et al. The global forest age dataset and its uncertainties (GFADv1.1). NASA National Aeronautics and Space Administration, PANGAEA. (2019).
Hordijk, I. et al. Dominance and rarity in tree communities across the globe: Patterns, predictors and threats. Glob. Ecol. Biogeogr. (2024).
Dinerstein, E. et al. An Ecoregion-Based approach to protecting half the terrestrial realm. Bioscience. 67, 534–545 (2017). PubMed PMC
The Plant List. The Plant List (2013). Version 1.1. 2013 [cited 2019 Jan 1]. Available from: www.theplantlist.org/
GBIF Backbone Taxonomy. GBIF Secretariat: GBIF Backbone Taxonomy. (2020) [cited 2020 Aug 3]. Available from: 10.15468/39omei
Bracken, M. E. S., Low, N. H. N. Realistic losses of rare species disproportionately impact higher trophic levels. Ecol. Lett.15, 461–467 (2012). PubMed
Gaston, K. Rarity, 13. Chapman & Hall; (1994).
Magurran, A. E. Measuring biological diversity. Blackwell Science Ltd. (2004).
Molina, N. Conservation of rare or little-known species: biological, social, and economic considerations. Island Press; (2013).
Roughgarden, J. J. D. Overview: the role of species interactions in community ecology. In: Diamond J. and Case T. J., eds Community Ecology. New York: Harper & Row Publishers. p. 333–343 (1986).
Stroud, J. T. et al. Is a community still a community? Reviewing definitions of key terms in community ecology. Ecol. Evol.5, 4757–4765 (2015). PubMed PMC
Bartelink, H. Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Ann des Sci For [Internet]. 54, 39–50 (1997).
Jonckheere. I., Muys. B., Coppin. P. Allometry and evaluation of in situ optical LAI determination in Scots pine: a case study in Belgium. Tree Physiol.25, 723–732 (2005). PubMed
Sumida, A., Miyaura, T. & Torii, H. Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol.33, 106–118 (2013). PubMed PMC
Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020). PubMed
Westoby, M. A. Leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil199, 213–227 (1998).
Ordonez, A., Wright, I. J., Olff, H. Functional differences between native and alien species: a global-scale comparison. Funct. Ecol. 24, 1353–1361 (2010).
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett.12, 351–366 (2009). PubMed
Trabucco, A., Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2. CGIAR Consortium for Spatial Information(CGIAR-CSI). [Internet]. (2018). Available from: https://cgiarcsi.community
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data. 4, 170122 (2017). PubMed PMC
Grömping, U. Relative importance for linear regression in R: The Package relaimpo. J. Stat. Softw.17, 1–27 (2006).
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2024).
Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 5–159 (2002).
Muller-Landau, H. C., Wright, S. J., Calderón, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol.96, 653–667 (2008).
Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA114, 10572–10577 (2017). PubMed PMC
Nicoll, B. C., Gardiner, B. A., Rayner, B. & Peace, A. J. Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Can. J. Res36, 1871–1883 (2006).
Tyree, M. T. & Sperry, J. S. Vulnerability of Xylem to cavitation and embolism. Annu Rev. Plant Physiol. Plant Mol. Biol.40, 19–36 (1989).
Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell Environ.34, 137–148 (2011). PubMed
O’Brien, S. T., Hubbell, S. P., Spiro, P., Condit, R. & Foster, R. B. Diameter, height, crown, and age relationships in eight neotropical tree species. Ecology76, 1926–1939 (1995).
Rosell, J. A. Bark thickness across the angiosperms: More than just fire. N. Phytol.211, 90–102 (2016). PubMed
Rosell, J. A., Gleason, S., Méndez-Alonzo, R., Chang, Y. & Westoby, M. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. N. Phytol.201, 299–311 (2014). PubMed
Mattson, W. J. Herbivory in Relation to Plant Nitrogen Content. Annu Rev. Ecol. Syst.11, 199–161 (1980).
Evans, J. R. Improving photosynthesis. Plant Physiol.162, 1780–1793 (2013). PubMed PMC
Güsewell, S. N: P ratios in terrestrial plants: variation and functional significance [Internet]. New Phytologist John Wiley & Sons, Ltd. p. 243–266. (2004). Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2004.01192.x PubMed DOI
Moles, A. T. & Westoby, M. Seedling survival and seed size: A synthesis of the literature. J. Ecol.92, 372–383 (2004).