Effect of climate on traits of dominant and rare tree species in the world's forests

. 2025 May 22 ; 16 (1) : 4773. [epub] 20250522

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40404639
Odkazy

PubMed 40404639
PubMed Central PMC12098762
DOI 10.1038/s41467-025-59754-7
PII: 10.1038/s41467-025-59754-7
Knihovny.cz E-zdroje

Species' traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.

5 N Sukachev Institute of Forest FRC KSC Siberian Branch of the Russian Academy of Sciences Krasnoyarsk Russia

All Russian Institute of Continuous Education in Forestry Pushkino Russian Federation

AMAP Univ Montpellier CIRAD CNRS INRAE IRD Montpellier France

Andes to Amazon Biodiversity Program Madre de Dios Peru

Bauman Moscow State Technical University Mytischi Russian Federation

Bavarian State Institute of Forestry Freising Germany

Biological Institute Tomsk State University Tomsk Russia

Biology Centre of the Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czech Republic

Biology Department Centre for Structural and Functional Genomics Concordia University Montreal QC Canada

Botanical Garden of Ural Branch of Russian Academy of Sciences Ural State Forest Engineering University Ekaterinburg Russia

CAVElab Computational and Applied Vegetation Ecology Department of Environment Ghent University Ghent Belgium

Center for Ecological Dynamics in a Novel Biosphere Department of Biology Aarhus University Ny Munkegade Denmark

Center for Forest Ecology and Productivity Russian Academy of Sciences Moscow Russia

Center for Tropical Research Institute of the Environment and Sustainability UCLA Los Angeles CA USA

Centre for Agricultural Research in Suriname Paramaribo Suriname

Centre for Conservation Science The Royal Society for the Protection of Birds Sandy UK

Centre for Forest Research Université du Québec à Montréal Montréal QC Canada

Centre for Invasion Biology Department of Mathematical Sciences Stellenbosch University Stellenbosch South Africa

Centre for the Research and Technology of Agro Environmental and Biological Sciences CITAB University of Trás os Montes and Alto Douro UTAD Vila Real Portugal

Centro Agricoltura Alimenti Ambiente University of Trento San Michele all'Adige Italy

Centro de Ciências Biológicas e da Natureza Universidade Federal do Acre Rio Branco Acre Brazil

Centro de Modelación y Monitoreo de Ecosistemas Universidad Mayor Santiago Chile

Centro Multidisciplinar Universidade Federal do Acre Rio Branco Brazil

Chair for Forest Growth and Yield Science TUM School for Life Sciences Technical University of Munich Munich Germany

CIRAD Forêts et Sociétés Montpellier France

Cirad UMR EcoFoG Kourou French Guiana

Climate Fire and Carbon Cycle Sciences USDA Forest Service Durham NC USA

Colegio de Ciencias y Humanidades Universidad Juárez del Estado de Durango Durango Mexico

Colegio de Profesionales Forestales de Cochabamba Cochabamba Bolivia

Compensation International S A Ci Progress GreenLife Bogotá D C Colombia

CTFS ForestGEO Smithsonian Tropical Research Institute Balboa Panama

Departamento de Biología Universidad de la Serena La Serena Chile

Departamento de Ecologia Universidade Federal do Rio Grande do Norte Natal Brazil

Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Mexico City Mexico

Departamento de Silvicultura y Conservación de la Naturaleza Universidad de Chile Santiago Chile

Department of Agricultural and Forest Sciences and Engineering University of Lleida Lleida Spain

Department of Agricultural Food Environmental and Animal Sciences University of Udine Udine Italy

Department of Agriculture Food Environment and Forest University of Firenze Florence Italy

Department of Agriculture Forestry and Bioresources Seoul National University Seoul South Korea

Department of Biological Sciences Boise State University Boise ID USA

Department of Biology Stanford University Stanford CA USA

Department of Biology University of Florence Florence Italy

Department of Biology University of Missouri St Louis St Louis MO USA

Department of Biology West Virginia University Morgantown WV USA

Department of Botany Dr Harisingh Gour Vishwavidyalaya Sagar MP India

Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic

Department of Ecology and Environmental Sciences Pondicherry University Puducherry India

Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA

Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA

Department of Ecology and Sustainable Agriculture Agricultural High School of Polytechnic Institute of Viseu Portugal and Centre for the Research and Technology of Agro Environmental and Biological Sciences CITAB University of Trás os Montes and Alto Douro Vila Real Portugal

Department of Environment and Development Studies United International University Dhaka Bangladesh

Department of Environment and Geography University of York York UK

Department of Environmental Sciences Central University of Jharkhand Ranchi India

Department of Evolutionary Anthropology Duke University Durham NC USA

Department of Evolutionary Biology and Environmental Studies University of Zürich Zürich Switzerland

Department of Forest and Wood Science University of Stellenbosch Stellenbosch South Africa

Department of Forest Engineering Universidade Regional de Blumenau Blumenau Santa Catarina Brazil

Department of Forest Resources University of Minnesota St Paul MN USA

Department of Forest Science Tokyo University of Agriculture Tokyo Japan

Department of Forest Sciences Luiz de Queiroz College of Agriculture University of São Paulo Piracicaba Brazil

Department of Forestry and Natural Resources Purdue University West Lafayette IN USA

Department of Genetics Evolution and Environment University College London London UK

Department of Geographical Sciences University of Maryland College Park MD USA

Department of Geography University College London London UK

Department of Geomatics Forest Research Institute Raszyn Poland

Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark

Department of Natural Sciences Manchester Metropolitan University Manchester UK

Department of Physical and Biological Sciences The College of Saint Rose Albany NY USA

Department of Physical and Environmental Sciences Colorado Mesa University Grand Junction CO USA

Department of Plant Biology Institute of Biology University of Campinas UNICAMP Campinas Brazil

Department of Plant Sciences and Conservation Research Institute University of Cambridge Cambridge UK

Department of Plant Sciences University of Oxford Oxford UK

Department of Plant Systematics University of Bayreuth Bayreuth Germany

Department of Spatial Regulation GIS and Forest Policy Institute of Forestry Belgrade Serbia

Department of Wetland Ecology Institute for Geography and Geoecology Karlsruhe Institute for Technology Karlsruhe Germany

Department of Wildlife Management College of African Wildlife Management Mweka Tanzania

Department of Zoology University of Oxford Oxford UK

Division of Forest and Forest Resources Norwegian Institute of Bioeconomy Research Ås Norway

Division of Forest Resources Information Korea Forest Promotion Institute Seoul South Korea

Division of Forestry and Natural Resources West Virginia University Morgantown WV USA

Ecole de Foresterie et Ingénierie du Bois Université Nationale d'Agriculture Ketou Benin

Environmental and Life Sciences Faculty of Science Universiti Brunei Darussalam Gadong Brunei Darussalam

Environmental Studies and Research Center University of Campinas UNICAMP Campinas Brazil

Escuela Politécnica Superior de Ingeniería Campus Terra Universidad de Santiago de Compostela Lugo Spain

European Commission Joint Research Centre Ispra Italy

Facultad de Ciencias Forestales Universidad Juárez del Estado de Durango Durango Mexico

Faculty of Biology Białowieża Geobotanical Station University of Warsaw Białowieża Poland

Faculty of Biology Geobotany University of Freiburg Freiburg im Breisgau Germany

Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic

Faculty of Forestry Qingdao Agricultural University Qingdao China

Faculty of Natural Resources Management Lakehead University Thunder Bay ON Canada

Faculty of Science and Technology Free University of Bolzano Bolzano Italy

Field Museum of Natural History Chicago IL USA

Flamingo Land Ltd Kirby Misperton UK

Forest Ecology and Forest Management Group Wageningen University and Research Wageningen The Netherlands

Forest Research Institute Malaysia Kuala Lumpur Malaysia

Forest Science and Technology Centre of Catalonia Solsona Spain

Forestry Division Food and Agriculture Organization of the United Nations Rome Italy

Forestry School Tecnológico de Costa Rica TEC Cartago Costa Rica

Forêts et Sociétés Univ Montpellier CIRAD Montpellier France

Fundacion ConVida Universidad Nacional Abierta y a Distancia UNAD Medellin Colombia

Gembloux Agro Bio Tech University of Liege Liege Belgium

Geography College of Life and Environmental Sciences University of Exeter Exeter UK

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

GIP ECOFOR Paris France

Global Change Research Institute CAS Brno Czech Republic

Graduate School of Agriculture Kyoto University Kyoto Japan

Guyana Forestry Commission Georgetown French Guiana

Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia

IFER Institute of Forest Ecosystem Research Jilove u Prahy Czech Republic

Info Flora Geneva Switzerland

INP HB UMRI Sciences Agronomiques et Procédés de Transformation Yamoussoukro Côte d'Ivoire

Institute for Tropical Biology and Conservation Universiti Malaysia Sabah Kota Kinabalu Sabah Malaysia

Institute for World Forestry University of Hamburg Hamburg Germany

Institute of Biology Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Wittenberg Germany

Institute of Botany The Czech Academy of Sciences 25243 Průhonice Czech Republic

Institute of Dendrology Polish Academy of Sciences Kórnik Poland

Institute of Forestry and Rural Engineering Estonian University of Life Sciences Tartu Estonia

Institute of Forestry Belgrade Serbia

Institute of Integrative Biology ETH Zurich Zurich Switzerland

Institute of Plant Sciences University of Bern Bern Switzerland

Institute of Tropical Forest Conservation Mbarara University of Sciences and Technology Mbarara Uganda

Instituto Nacional de Pesquisas da Amazônia Manaus Brazil

Instituto Nacional de Tecnología Agropecuaria Rio Gallegos Argentina

Interdisciplinary Program in Agricultural and Forest Meteorology Seoul National University Seoul South Korea

International Institute for Applied Systems Analysis Laxenburg Austria

IRET Herbier National du Gabon Libreville Gabon

Isotope Bioscience Laboratory ISOFYS Ghent University Ghent Belgium

Iwokrama International Centre for Rainforest Conservation and Development Georgetown Guyana

Jardín Botánico de Medellín Medellín Colombia

Jardín Botánico de Missouri Oxapampa Peru

Key Laboratory of Tropical Biological Resources Ministry of Education School of Life and Pharmaceutical Sciences Hainan University Haikou China

Laboratório de Dendrologia e Silvicultura Tropical Centro de Formação em Ciências Agroflorestais Universidade Federal do Sul da Bahia Itabuna Brazil

LINCGlobal Museo Nacional de Ciencias Naturales CSIC Madrid Spain

Manaaki Whenua Landcare Research Lincoln New Zealand

Museo de Historia natural Noel kempff Mercado Santa Cruz Bolivia

Museu Paraense Emílio Goeldi Coordenação de Ciências da Terra e Ecologia Belém Pará Brasil

National Center for Agro Meteorology Seoul South Korea

National Forest Centre Forest Research Institute Zvolen Zvolen Slovakia

National Institute of Amazonian Research Manaus Brazil

Natural Resources Institute Finland Joensuu Finland

Natural Science Department Universidade Regional de Blumenau Blumenau Brazil

Naturalis Biodiversity Centre Leiden The Netherlands

Nicholas School of the Environment Duke University Durham NC USA

Plant Ecology and Nature Conservation Group Wageningen University P O Box 47 Wageningen The Netherlands

Plant Systematic and Ecology Laboratory Department of Biology Higher Teachers' Training College University of Yaoundé 1 Yaoundé Cameroon

Polish State Forests Coordination Center for Environmental Projects Warsaw Poland

Pontificia Universidad Católica del Ecuador Quito Ecuador

Poznań University of Life Sciences Department of Game Management and Forest Protection Poznań Poland

Proceedings of the National Academy of Sciences Washington DC USA

Programa de Pós graduação em Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil

Programa de Pós graduação em Ecologia e Conservação Universidade do Estado de Mato Grosso Nova Xavantina Brazil

Quantitative Biodiversity Dynamics Department of Biology Utrecht University Utrecht The Netherlands

Queensland Herbarium Department of Environment and Science Toowong QL Australia

Research and Innovation Center Fondazione Edmund Mach San Michele all'Adige Italy

Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China

Research Institute for Agriculture and Life Sciences Seoul National University Seoul South Korea

Royal Botanic Garden Edinburgh Edinburgh UK

School of Biological and Behavioural Sciences Queen Mary University of London London UK

School of Biological Sciences University of Bristol Bristol UK

School of Forestry and Environmental Studies Yale University New Haven CT USA

School of Geography and Sustainable Development University of St Andrews St Andrews UK

School of Geography University of Leeds Leeds UK

School of Geography University of Oxford Oxford UK

School of Social Sciences Western Sydney University Penrith NSW Australia

Section for Ecoinformatics and Biodiversity Department of Biology Aarhus University Aarhus Denmark

Servicios Ecosistémicos y Cambio Climático Fundación Con Vida and Corporación COL TREE Medellín Colombia

Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany

Silviculture Research Institute Vietnamese Academy of Forest Sciences Hanoi Vietnam

Spatial Ecology and Conservation Laboratory Center for Latin American Studies University of Florida Gainesville FL USA

Spatial Ecology and Conservation Laboratory School of Forest Fisheries and Geomatics Sciences University of Florida Gainesville FL USA

Stefan cel Mare University of Suceava Suceava Romania

Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

The Santa Fe Institute Santa Fe NM USA

Theoretical Ecology Unit African Institute for Mathematical Sciences Cape Town South Africa

Tropenbos International Wageningen The Netherlands

Tropical Biodiversity MUSE Museo delle Scienze Trento Italy

Tropical Forests and People Research Centre University of the Sunshine Coast Maroochydore QL Australia

UFR Biosciences University Félix Houphouët Boigny Abidjan Côte d'Ivoire

UMR EcoFoG AgroParisTech Kourou France

UNELLEZ Guanare Programa de Ciencias del Agro y el Mar Herbario Universitario Portuguesa Venezuela

UniSA STEM and Future Industries Institute University of South Australia Adelaide SA Australia

United Nation Framework Convention on Climate Change Bonn Germany

Universidad del Tolima Ibagué Colombia

Universidad Estatal Amazónica Puyo Pastaza Ecuador

Universidad Nacional de la Amazonía Peruana Iquitos Peru

Universidad Nacional de San Antonio Abad del Cusco Cusco Peru

Université de Lorraine AgroParisTech Inra Silva Nancy France

Vicerrectoría de Investigación y Postgrado Universidad de La Frontera Temuco Chile

Wageningen University and Research Wageningen The Netherlands

Warsaw University of Life Sciences Department of Forest Management Dendrometry and Forest Economics Warsaw Poland

Wild Chimpanzee Foundation Liberia Office Monrovia Liberia

Wildlife Conservation Society New York NY USA

Zobrazit více v PubMed

Fauset, S. et al. Hyperdominance in Amazonian forest carbon cycling. Nat. Commun.6, 1–9 (2015). PubMed PMC

Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol.86, 902–910 (1998).

Jain, M. et al. The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4, 104–112 (2014). PubMed PMC

Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. Mace G. M., editor. PLoS Biol. 11, e1001569 (2013). PubMed PMC

HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M. & Mayfield, M. M. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst.43, 227–248 (2012).

Kutzbach, J. et al. Climate and Biome simulations for the past 21,000 years. Quat. Sci. Rev.17, 473–506 (1998).

Woodward, F. I., Lomas, M. R. & Kelly, C. K. Global climate and the distribution of plant biomes. Philos. Trans. R. Soc. B: Biol. Sci.359, 1465–1476 (2004). PubMed PMC

Kirschbaum, M. U. F. Forest growth and species distribution in a changing climate. Tree Physiol.20, 309–322 (2000). PubMed

Woodward, F. I. Climate and plant distribution. Cambridge University Press. (1987).

Joswig, J. S. et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol.6, 36–50 (2022). PubMed PMC

Kühn, N. et al. Globally important plant functional traits for coping with climate change. Front Biogeogr.13, 1–18 (2021).

Madani, N. et al. Future global productivity will be affected by plant trait response to climate. Sci. Rep.8, 2870 (2018). PubMed PMC

Avolio, M. L. et al. Demystifying dominant species. N. Phytol. 223, 1106–1126 (2019). PubMed

Bruelheide, H. et al. Global trait–environment relationships of plant communities. Nat. Ecol. Evol.2, 1906–1917 (2018). PubMed

Weiher, P., Keddy, E. Ecological assembly rules: perspectives, advances, retreats [Internet]. Cambridge University Press; 2001. Available from: https://books.google.co.in/books?hl=en&lr=&id=RIZDYJ0zKaAC&oi=fnd&pg=PR12&dq=Wilson,+J.+B.++(1999a).+Assembly+rules+in+plant+communities.+Ecological+Assembly+Rules:+Perspectives,+Advances,+Retreats+(eds+E.+Weiher+and+P.+A.+Keddy),+pp.+130%E2%80%93164.+Cambri&redir_esc=y#v=onepage&q&f=false.

Hulshof, C. M. et al. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. de Bello F., editor. J. Veg. Sci.24, 921–931 (2013).

Whittaker, R. H. Dominance and diversity in land plant communities. Science147, 250–260 (1965). PubMed

Violle, C. et al. Let the concept of trait be functional! Oikos [Internet]. 116, 882–892 (2007).

Kunstler, G. et al. Plant functional traits have globally consistent effects on competition. Nature. 529, 204–207 (2016). PubMed

Aiba, M. & Nakashizuka, T. Architectural differences associated with adult stature and wood density in 30 temperate tree species. Funct. Ecol.23, 265–273 (2009).

Poorter, L., Bongers, L. & Bongers, F. Architecture of 54 moist-forest tree species: traits, trade-offs, and functional groups. Ecol. Soc. Am.87, 1289–1301 (2016). PubMed

Wright, S. J. et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology. 91, 3664–3474 (2010). PubMed

Niinemets, Ü. A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecol. Res.25, 693–714 (2010).

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis. N. Phytol.182, 565–588 (2009). PubMed

Moles, A. T. et al. Which is a better predictor of plant traits: Temperature or precipitation? J. Veg. Sci.25, 1167–1180 (2014).

Harrison, S. P. et al. Ecophysiological and bioclimatic foundations for a global plant functional classification. J. Veg. Sci.21, 300–317 (2010).

Lambers, H., Chapin, F. S., Pons, T. L. Leaf Energy Budgets: Effects of Radiation and Temperature. In: Plant Physiological Ecology., 210–229. (1998).

Went, F. W. The effect of temperature on plant growth. Annu. Rev. Plant Physiol.4, 347–362 (1953).

Murray, B. R., Brown, A. H. D., Dickman, C. R. & Crowther, M. S. Geographical gradients in seed mass in relation to climate. J. Biogeogr.31, 379–388 (2004).

Swenson, N. G., Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot. 94, 451–459 (2007). PubMed

O’Brien, M. J. et al. A synthesis of tree functional traits related to drought-induced mortality in forests across climatic zones. J. Appl. Ecol.54, 1669–1686 (2017).

Wright, I. J., Reich, P. B. & Westoby, M. Least-cost input mixtures of water and nitrogen for photosynthesis. Am. Nat.161, 98–111 (2003). PubMed

Lintunen, A., Hölttä, T. & Kulmala, M. Anatomical regulation of ice nucleation and cavitation helps trees to survive freezing and drought stress. Sci. Rep.3, 2031 (2013). PubMed PMC

Pollastrini, M., Puletti, N., Selvi, F., Iacopetti, G. & Bussotti, F. Widespread crown defoliation after a drought and heat wave in the forests of Tuscany (Central Italy) and their recovery—a case study from summer 2017. Front Glob. Chang.2, 74 (2019).

Ruehr, N. K., Gast, A., Weber, C., Daub, B. & Arneth, A. Water availability as dominant control of heat stress responses in two contrasting tree species. Tree Physiol.36, 164–178 (2015). PubMed

Magurran, A. E., Henderson, P. A. Explaining the excess of rare species in natural species abundance distributions. Nature. 422, 714–716 (2003). PubMed

Dee, L. E. et al. When do ecosystem services depend on rare species? Trends Ecol. Evol.34, 746–758 (2019). PubMed

Hermy, M. & Verheyen, K. Legacies of the past in the present-day forest biodiversity: A review of past land-use effects on forest plant species composition and diversity. Ecol. Res.22, 361–371 (2007).

Roosevelt, A. C. The Amazon and the Anthropocene: 13,000 years of human influence in a tropical rainforest. Anthropocene4, 69–87 (2013).

Wiens, J. J. The niche, biogeography and species interactions. Philos. Trans. R. Soc. B: Biol. Sci.366, 2336–2350 (2011). PubMed PMC

Hubbell, S. P., Foster, R. B. Commonness and rarity in a neotropical forest: implications for tropical tree conservation. In: Soulé ME (ed) Conservation biology. Sunderland: Sinauer asociates; 1986. p. 205–231.

Markham, J. Rare species occupy uncommon niches. Sci.4, 6012 (2014). PubMed PMC

Maire, V. et al. Habitat filtering and niche differentiation jointly explain species relative abundance within grassland communities along fertility and disturbance gradients. New Phytol. 196, 497–509. (2012). PubMed

Díaz, S. et al. The global spectrum of plant form and function. Nature. 529, 167–171 (2016). PubMed

Maynard, D. S. et al. Global relationships in tree functional traits. Nat. Commun.13, 3185 (2022). PubMed PMC

Coomes, D. A. & Allen, R. B. Effects of size, competition and altitude on tree growth. J. Ecol.95, 1084–1097 (2007).

Li, W. et al. Human fingerprint on structural density of forests globally. Nat. Sustain6, 368–379 (2023).

Rüger, N. et al. Successional shifts in tree demographic strategies in wet and dry Neotropical forests. Glob. Ecol. Biogeogr.32, 1002–1014 (2023).

Draper, F. C. et al. Amazon tree dominance across forest strata. Nat. Ecol. Evol.5, 757–767 (2021). PubMed

King, D. A., Wright, S. J. & Connell, J. H. The contribution of interspecific variation in maximum tree height to tropical and temperate diversity. J. Trop. Ecol.22, 11–24 (2006).

Boyce, A. J., Shakya, S., Sheldon, F. H., Moyle, R. G., Martin, T. E. Biotic interactions are the dominant drivers of phylogenetic and functional structure in bird communities along a tropical elevational gradient. Auk. 136, ukz054 (2019).

Miller, E. T. et al. Fighting over food unites the birds of North America in a continental dominance hierarchy. Stephens D., editor. Behav. Ecol.28, 1454–1463 (2017).

Delgado-baquerizo, M. et al. A Gobal Atlas of the dominant bacteria found in soil. Science.325, 320–325 (2018). PubMed

Dalerum, F., Cameron, E. Z., Kunkel, K. & Somers, M. J. Interactive effects of species richness and species traits on functional diversity and redundancy. Theor. Ecol.5, 129–139 (2012).

Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol.89, 118–125 (2001).

Monge-González, M. L., Guerrero-Ramírez, N., Krömer, T., Kreft, H. & Craven, D. Functional diversity and redundancy of tropical forests shift with elevation and forest-use intensity. J. Appl. Ecol., Biodivers. Data J.58, 1827–1837 (2021). PubMed PMC

Zhang, S., Zang, R. & Sheil, D. Rare and common species contribute disproportionately to the functional variation within tropical forests. J. Environ. Manag.304, 114332 (2022). PubMed

Reich, P. B. et al. The evolution of plant functional variation: Traits, spectra, and strategies. Int. J. Plant Sci.164, S143–S164 (2003).

Valladares, F. & Niinemets, Ü. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst.39, 237–257 (2008).

Greenwood, S. et al. Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecol. Lett.20, 539–553 (2017). PubMed

Legner, N., Fleck, S. & Leuschner, C. Within-canopy variation in photosynthetic capacity, SLA and foliar N in temperate broad-leaved trees with contrasting shade tolerance. Trees - Struct. Funct.28, 263–280 (2014).

Ramírez-Valiente, J. A. & Cavender-Bares, J. Evolutionary trade-offs between drought resistance mechanisms across a precipitation gradient in a seasonally dry tropical oak (Quercus oleoides). Tree Physiol.37, 889–901 (2017). PubMed

Finér, L. et al. Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosyst.141, 394–405 (2007).

Loram-Lourenço, L. et al. A structure shaped by fire, but also water: ecological consequences of the variability in bark properties across 31 species from the Brazilian Cerrado. Front. Plant Sci.10, 1718 (2020). PubMed PMC

Yang, S. et al. Stem Trait Spectra underpin multiple functions of temperate tree species. Front. Plant Sci.13, 769551 (2022). PubMed PMC

Boulangeat, I., Lavergne, S., Van Es, J., Garraud, L. & Thuiller, W. Niche breadth, rarity and ecological characteristics within a regional flora spanning large environmental gradients. J. Biogeogr.39, 204–214 (2012).

Cai, H., Li, F. & Jin, G. Forest strata-dependent effects of vegetation attributes and soil nutrients on decadal changes in aboveground net carbon stock in two temperate forests. Catena194, 104776 (2020).

Crivellaro, A., Piermattei, A., Dolezal, J., Dupree, P. & Büntgen, U. Biogeographic implication of temperature-induced plant cell wall lignification. Commun. Biol.5, 767 (2022). PubMed PMC

Song, Y., Poorter, L., Horsting, A., Delzon, S. & Sterck, F. Pit and tracheid anatomy explain hydraulic safety but not hydraulic efficiency of 28 conifer species. J. Exp. Bot.73, 1033–1048 (2022). PubMed PMC

Wright, I. J. et al. The worldwide leaf economics spectrum. Nature428, 821–827 (2004). PubMed

Adler, R. F., Gu, G., Sapiano, M., Wang, J. J. & Huffman, G. J. Global precipitation: means, variations and trends during the satellite era (1979–2014). Surv. Geophys.38, 1–21 (2017).

Liang, J. et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat. Ecol. Evol.6, 1423–1437 (2022). PubMed

Rind, D. Latitudinal temperature gradients and climate change. J. Geophys. Res Atmos.103, 5943–5971 (1998).

Yamahira, K. & Conover, D. O. Intra- vs. interspecific latitudinal variation in growth: Adaptation to temperature or seasonality? Ecology83, 1252–1262 (2002).

Brunner, I., Herzog, C., Dawes, M. A., Arend, M. & Sperisen, C. How tree roots respond to drought. Front. Plant Sci.6, 547 (2015). PubMed PMC

Poorter, H. et al. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. N. Phytologist193, 30–50 (2012). PubMed

Lamanna, C. et al. Functional trait space and the latitudinal diversity gradient. Proc. Natl Acad. Sci.111, 13745–13750 (2014). PubMed PMC

Hordijk, I. et al. Evenness mediates the global relationship between forest productivity and richness. J. Ecol.111, 1308–1326 (2023).

Khaine, I. et al. Species diversity, stand structure, and species distribution across a precipitation gradient in tropical forests in Myanmar. Forests8, 282 (2017).

Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science354, aaf8957 (2016). PubMed

Weemstra, M. et al. The role of fine-root mass, specific root length and life span in tree performance: A whole-tree exploration. Funct. Ecol.34, 575–585 (2020).

Olson, M. E., Anfodillo, T., Gleason, S. M. & McCulloh, K. A. Tip-to-base xylem conduit widening as an adaptation: causes, consequences, and empirical priorities. N. Phytol.229, 1877–1893 (2021). PubMed

Goorman, R., Bartual, A., Paula, S. & Ojeda, F. Enhancement of photosynthesis in post-disturbance resprouts of two co-occurring Mediterranean Erica species. Plant Ecol.212, 2023–2033 (2011).

Bréda, N., Huc, R., Granier, A. & Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. Sci.63, 625–644 (2006).

Lohbeck, M., Poorter, L., Mart, M. & Rodriguez-, J. Changing drivers of species dominance during tropical forest succession. Funct. Ecol.27, 1052–1058 (2014).

van Der Sande, M. T. et al. Tropical forest succession increases tree taxonomic and functional richness but decreases evenness. Glob. Ecol. Biogeogr. (2024).

Karadimou. E. K., Kallimanis, A. S., Tsiripidis, I., Dimopoulos, P. Functional diversity exhibits a diverse relationship with area, even a decreasing one. Sci. Rep. 6, 35420 (2016). PubMed PMC

Poulter. B. et al. The global forest age dataset and its uncertainties (GFADv1.1). NASA National Aeronautics and Space Administration, PANGAEA. (2019).

Hordijk, I. et al. Dominance and rarity in tree communities across the globe: Patterns, predictors and threats. Glob. Ecol. Biogeogr. (2024).

Dinerstein, E. et al. An Ecoregion-Based approach to protecting half the terrestrial realm. Bioscience. 67, 534–545 (2017). PubMed PMC

The Plant List. The Plant List (2013). Version 1.1. 2013 [cited 2019 Jan 1]. Available from: www.theplantlist.org/

GBIF Backbone Taxonomy. GBIF Secretariat: GBIF Backbone Taxonomy. (2020) [cited 2020 Aug 3]. Available from: 10.15468/39omei

Bracken, M. E. S., Low, N. H. N. Realistic losses of rare species disproportionately impact higher trophic levels. Ecol. Lett.15, 461–467 (2012). PubMed

Gaston, K. Rarity, 13. Chapman & Hall; (1994).

Magurran, A. E. Measuring biological diversity. Blackwell Science Ltd. (2004).

Molina, N. Conservation of rare or little-known species: biological, social, and economic considerations. Island Press; (2013).

Roughgarden, J. J. D. Overview: the role of species interactions in community ecology. In: Diamond J. and Case T. J., eds Community Ecology. New York: Harper & Row Publishers. p. 333–343 (1986).

Stroud, J. T. et al. Is a community still a community? Reviewing definitions of key terms in community ecology. Ecol. Evol.5, 4757–4765 (2015). PubMed PMC

Bartelink, H. Allometric relationships for biomass and leaf area of beech (Fagus sylvatica L). Ann des Sci For [Internet]. 54, 39–50 (1997).

Jonckheere. I., Muys. B., Coppin. P. Allometry and evaluation of in situ optical LAI determination in Scots pine: a case study in Belgium. Tree Physiol.25, 723–732 (2005). PubMed

Sumida, A., Miyaura, T. & Torii, H. Relationships of tree height and diameter at breast height revisited: Analyses of stem growth using 20-year data of an even-aged Chamaecyparis obtusa stand. Tree Physiol.33, 106–118 (2013). PubMed PMC

Kattge, J. et al. TRY plant trait database – enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020). PubMed

Westoby, M. A. Leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil199, 213–227 (1998).

Ordonez, A., Wright, I. J., Olff, H. Functional differences between native and alien species: a global-scale comparison. Funct. Ecol. 24, 1353–1361 (2010).

Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett.12, 351–366 (2009). PubMed

Trabucco, A., Zomer, R. J. Global Aridity Index and Potential Evapo-Transpiration (ET0) Climate Database v2. CGIAR Consortium for Spatial Information(CGIAR-CSI). [Internet]. (2018). Available from: https://cgiarcsi.community

Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data. 4, 170122 (2017). PubMed PMC

Grömping, U. Relative importance for linear regression in R: The Package relaimpo. J. Stat. Softw.17, 1–27 (2006).

R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. (2024).

Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 5–159 (2002).

Muller-Landau, H. C., Wright, S. J., Calderón, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol.96, 653–667 (2008).

Fan, Y., Miguez-Macho, G., Jobbágy, E. G., Jackson, R. B. & Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl Acad. Sci. USA114, 10572–10577 (2017). PubMed PMC

Nicoll, B. C., Gardiner, B. A., Rayner, B. & Peace, A. J. Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Can. J. Res36, 1871–1883 (2006).

Tyree, M. T. & Sperry, J. S. Vulnerability of Xylem to cavitation and embolism. Annu Rev. Plant Physiol. Plant Mol. Biol.40, 19–36 (1989).

Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant, Cell Environ.34, 137–148 (2011). PubMed

O’Brien, S. T., Hubbell, S. P., Spiro, P., Condit, R. & Foster, R. B. Diameter, height, crown, and age relationships in eight neotropical tree species. Ecology76, 1926–1939 (1995).

Rosell, J. A. Bark thickness across the angiosperms: More than just fire. N. Phytol.211, 90–102 (2016). PubMed

Rosell, J. A., Gleason, S., Méndez-Alonzo, R., Chang, Y. & Westoby, M. Bark functional ecology: Evidence for tradeoffs, functional coordination, and environment producing bark diversity. N. Phytol.201, 299–311 (2014). PubMed

Mattson, W. J. Herbivory in Relation to Plant Nitrogen Content. Annu Rev. Ecol. Syst.11, 199–161 (1980).

Evans, J. R. Improving photosynthesis. Plant Physiol.162, 1780–1793 (2013). PubMed PMC

Güsewell, S. N: P ratios in terrestrial plants: variation and functional significance [Internet]. New Phytologist John Wiley & Sons, Ltd. p. 243–266. (2004). Available from: https://onlinelibrary.wiley.com/doi/10.1111/j.1469-8137.2004.01192.x PubMed DOI

Moles, A. T. & Westoby, M. Seedling survival and seed size: A synthesis of the literature. J. Ecol.92, 372–383 (2004).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...