Functional trait space and the latitudinal diversity gradient

. 2014 Sep 23 ; 111 (38) : 13745-50. [epub] 20140915

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid25225365

Grantová podpora
310886 European Research Council - International

The processes causing the latitudinal gradient in species richness remain elusive. Ecological theories for the origin of biodiversity gradients, such as competitive exclusion, neutral dynamics, and environmental filtering, make predictions for how functional diversity should vary at the alpha (within local assemblages), beta (among assemblages), and gamma (regional pool) scales. We test these predictions by quantifying hypervolumes constructed from functional traits representing major axes of plant strategy variation (specific leaf area, plant height, and seed mass) in tree assemblages spanning the temperate and tropical New World. Alpha-scale trait volume decreases with absolute latitude and is often lower than sampling expectation, consistent with environmental filtering theory. Beta-scale overlap decays with geographic distance fastest in the temperate zone, again consistent with environmental filtering theory. In contrast, gamma-scale trait space shows a hump-shaped relationship with absolute latitude, consistent with no theory. Furthermore, the overall temperate trait hypervolume was larger than the overall tropical hypervolume, indicating that the temperate zone permits a wider range of trait combinations or that niche packing is stronger in the tropical zone. Although there are limitations in the data, our analyses suggest that multiple processes have shaped trait diversity in trees, reflecting no consistent support for any one theory.

Center for Theoretical Study Charles University Prague and Academy of Sciences of the Czech Republic 110 00 Praha Czech Republic;

Centre d'Ecologie Fonctionelle et Evolutive Unité Mixte de Recherche 5175 Centre National de la Recherche Scientifique Université de Montpellier Université Paul Valéry Montpellier École Pratique des Hautes Études 34293 Montpellier France;

Department of Biology University of Maryland College Park MD 20742;

Department of Biology University of North Carolina at Chapel Hill Chapel Hill NC 27599;

Department of Computer Science and Information Systems Bradley University Peoria IL 61625;

Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721;

Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721; Center for Macroecology Evolution and Climate Copenhagen University 2100 Copenhagen Denmark;

Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721; iPlant Collaborative Tucson AZ 85721;

Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ 85721; iPlant Collaborative Tucson AZ 85721; Santa Fe Institute Santa Fe NM 87501

iPlant Collaborative Tucson AZ 85721; National Center for Ecological Analysis and Synthesis University of California Santa Barbara CA 93106;

Landcare Research Lincoln 7640 New Zealand;

Missouri Botanical Garden St Louis MO 63166;

National Center for Ecological Analysis and Synthesis University of California Santa Barbara CA 93106;

New York Botanical Garden Bronx NY 10458; and

Section for Ecoinformatics and Biodiversity Department of Bioscience and

Section for Ecoinformatics and Biodiversity Department of Bioscience and Center for Massive Data Algorithmics Department of Computer Science Aarhus University DK 8000 Aarhus Denmark;

Sustainability Solutions Initiative and

Sustainability Solutions Initiative and School of Biology and Ecology University of Maine Orono ME 04469;

Yale NUS College Republic of Singapore 138614;

Zobrazit více v PubMed

Wallace AR. Tropical Nature and Other Essays. New York: Macmillan; 1878.

Dobzhansky T. Evolution in the tropics. Am Sci. 1950;38:209–221.

Brown JH, Lomolino MV. Biogeography. Sunderland, MA: Sinauer; 1998.

Hillebrand H. On the generality of the latitudinal diversity gradient. Am Nat. 2004;163(2):192–211. PubMed

Stephens PR, Wiens JJ. Explaining species richness from continents to communities: The time-for-speciation effect in emydid turtles. Am Nat. 2003;161(1):112–128. PubMed

Buckley LB, et al. Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proc Biol Sci. 2010;277(1691):2131–2138. PubMed PMC

Stevens GC. The latitudinal gradient in geographic range: How so many species coexist in the tropics. Am Nat. 1989;133:240–256.

Allen AP, Brown JH, Gillooly JF. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science. 2002;297(5586):1545–1548. PubMed

Mittelbach GG, et al. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol Lett. 2007;10(4):315–331. PubMed

Mannion PD, Upchurch P, Benson RB, Goswami A. The latitudinal biodiversity gradient through deep time. Trends Ecol Evol. 2014;29(1):42–50. PubMed

Simova I, et al. Global species-energy relationship in forest plots: Role of abundance, temperature and species climatic tolerances. Glob Ecol Biogeogr. 2011;20:842–856.

Rohde K. Latitudinal gradients in species diversity: The search for the primary cause. Oikos. 1992;65:514–527.

Pianka E. Latitudinal gradients in species diversity: A review of concepts. Am Nat. 1966;100:33–46.

Currie DJ. Energy and large-scale patterns of animal and plant species richness. Am Nat. 1991;137:27–49.

Currie DJ, et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett. 2004;7:1121–1134.

Currie DJ, Francis AP, Kerr JT. Some general propositions about the study of spatial patterns of species richness. Ecoscience. 1999;6:392–399.

Swenson NG, et al. The biogeography and filtering of woody plant functional diversity in North and South America. Glob Ecol Biogeogr. 2012;21:798–808.

Ricklefs RE. Species richness and morphological diversity of passerine birds. Proc Natl Acad Sci USA. 2012;109(36):14482–14487. PubMed PMC

Roy K, Jablonski D, Valentime JW. In: Frontiers of Biogeography: New Directions in the Geography of Nature. Lomolino MV, Heaney LR, editors. Sunderland, MA: Sinauer; 2004. pp. 151–170.

Ricklefs RE, O’Rourke K. Aspect diversity in moths: A temperate-tropical comparison. Evolution. 1975;29:313–324. PubMed

McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol Evol. 2006;21(4):178–185. PubMed

Hutchinson GE. Concluding remarks. Cold Spring Harb Symp Quant Biol. 1957;22:415–427.

Mouillot D, et al. Niche overlap estimates based on quantitative functional traits: A new family of non-parametric indices. Oecologia. 2005;145(3):345–353. PubMed

Violle C, et al. The return of the variance: Intraspecific variability in community ecology. Trends Ecol Evol. 2012;27(4):244–252. PubMed

Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil. 1998;199:213–227.

Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428(6985):821–827. PubMed

Thompson F, Moles AT, Auld T, Kingsford R. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol. 2011;99:1299–1307.

Stahl U, et al. Whole-plant trait spectra of North American woody plant species reflect fundamental ecological strategies. Ecosphere. 2013;4:1–28.

Laughlin D. The intrinsic dimensionality of plant traits and its relevance to community assembly. J Ecol. 2014;102:186–193.

Blonder B, Lamanna C, Violle C, Enquist BJ. The n-dimensional hypervolume. Glob Ecol Biogeogr. 2014;23:595–609.

Violle C, Jiang L. Towards a trait-based quantification of species niche. J Plant Ecol. 2009;2:87–93.

Schemske DW. In: Speciation and Patterns of Diversity. Butlin RK, Bridle JR, Schluter D, editors. Cambridge, UK: Cambridge Univ Press; 2009. pp. 220–239.

MacArthur RH, Levins R. The limiting similarity, convergence and divergence of coexisting species. Am Nat. 1967;101:377–385.

Tilman D, Lehman CL, Thomson KT. Plant diversity and ecosystem productivity: Theoretical considerations. Proc Natl Acad Sci USA. 1997;94(5):1857–1861. PubMed PMC

Janzen D. Why mountain passes are higher in the tropics. Am Nat. 1967;101:233–249.

Klopfer P, MacArthur R. On the causes of tropical species diversity: Niche overlap. Am Nat. 1961;95:223–226.

Kerkhoff AJ, Moriarty PE, Weiser MD. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc Natl Acad Sci USA. 2014;111(22):8125–8130. PubMed PMC

Kleidon A, Mooney HA. A global distribution of biodiversity inferred from climatic constraints: Results from a process-based modelling study. Glob Change Biol. 2000;6:507–523.

Wiens JJ, Donoghue MJ. Historical biogeography, ecology and species richness. Trends Ecol Evol. 2004;19(12):639–644. PubMed

Hubbell SP. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton: Princeton Univ Press; 2001. PubMed

Violle C, et al. Let the concept of trait be functional! Oikos. 2007;116:882–892.

Cardillo M. Latitude and rates of diversification in birds and butterflies. Proc Biol Sci. 1999;266:1221–1225.

Rosenzweig ML. Species Diversity in Space and Time. Cambridge, UK: Cambridge Univ Press; 1995.

Jablonski D, Roy K, Valentine JW. Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science. 2006;314(5796):102–106. PubMed

Kraft NJB, Valencia R, Ackerly DD. Functional traits and niche-based tree community assembly in an Amazonian forest. Science. 2008;322(5901):580–582. PubMed

Mouchet M, Villéger S, Mason N, Mouillot D. Functional diversity measures: An overview of their redundancy and their ability to discriminate community assembly rules. Funct Ecol. 2010;24:867–876.

Hardin G. The competitive exclusion principle. Science. 1960;131(3409):1292–1297. PubMed

Terborgh J. On the notion of favorableness in plant ecology. Am Nat. 1973;107:481–501.

Schemske D, Mittelbach G, Cornell H, Sobel J, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst. 2009;40:245–269.

Schleuning M, et al. Specialization of mutualistic interaction networks decreases toward tropical latitudes. Curr Biol. 2012;22(20):1925–1931. PubMed

Kobe R, Pacala S, Silander J. Juvenile tree survivorship as a component of shade tolerance. Ecol Appl. 1995;5:517–532.

Pacala S, et al. Forest models defined by field measurements: Estimation, error analysis and dynamics. Ecol Monogr. 1996;44:1–43.

Wright SJ, et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology. 2010;91(12):3664–3674. PubMed

Cornell H, Lawton J. Species interactions, local and regional processes, and limits to the richness of ecological communities: A theoretical perspective. J Ecol. 1992;61:1–12.

Woodward FI. Climate and Plant Distribution. Cambridge, UK: Cambridge Univ Press; 1988.

Zanne A, et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506(7486):89–92. PubMed

Safi K, et al. Understanding global patterns of mammalian functional and phylogenetic diversity. Philos Trans R Soc Lond B Biol Sci. 2011;366:2536–2544. PubMed PMC

Ricklefs RE. Aspect diversity in moths revisited. Am Nat. 2009;173(3):411–416. PubMed

Ricklefs RE, Marquis RJ. Species richness and niche space for temperate and tropical folivores. Oecologia. 2012;168(1):213–220. PubMed

Laughlin DC, Joshi C, van Bodegom PM, Bastow ZA, Fulé PZ. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol Lett. 2012;15(11):1291–1299. PubMed

May RM, MacArthur RH. Niche overlap as a function of environmental variability. Proc Natl Acad Sci USA. 1972;69(5):1109–1113. PubMed PMC

Mayfield MM, Levine JM. Opposing effects of competitive exclusion on the phylogenetic structure of communities. Ecol Lett. 2010;13(9):1085–1093. PubMed

Baltzer J, Thomas S. Determinants of whole-plant light requirements in Bornean rain forest tree saplings. J Ecol. 2007;95:1208–1221.

Armbruster W. The origins and detection of plant community structure: Reproductive versus vegetative processes. Folia Geobot. 1995;30:483–497.

Sargent RD, Ackerly DD. Plant-pollinator interactions and the assembly of plant communities. Trends Ecol Evol. 2008;23(3):123–130. PubMed

Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? Oikos. 2011;120:321–326.

King DA, Wright SJ, Connell JH. The contribution of interspecific variation in maximum tree height to tropical and temperate diversity. J Trop Ecol. 2006;22:11–24.

Kattge J, et al. TRY—A global database of plant traits. Glob Change Biol. 2011;17:2905–2935.

Homburg K, Homburg N, Schäfer F, Schuldt A, Assmann T. Carabids.org—A dynamic online database of ground beetle species traits (Coleoptera, Carabidae) Insect Conserv Divers. 2013;7:195–205.

Baldridge E, Myrhvold N, Ernest SM. Macroecological life-history trait database for birds, mammals, and reptiles. Mammalia. 2012;153:5416.

Shan H, et al. Gap filling in the plant kingdom—trait prediction using hierarchical probabilistic matrix factorization; Proceedings of the 29th International Conference of Machine Learning; 2012. Available at http://icml.cc/2012/papers/652.pdf.

Gentry A. Patterns of neotropical plant species diversity. Evol Biol. 1982;15:1–84.

Boyle B, et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics. 2013;14:1471–2105. PubMed PMC

Morueta-Holme N, et al. Habitat area and climate stability determine geographical variation in plant species range sizes. Ecol Lett. 2013;16:1446–1454. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...