Latitudinal patterns in stabilizing density dependence of forest communities
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38418889
PubMed Central
PMC10954553
DOI
10.1038/s41586-024-07118-4
PII: 10.1038/s41586-024-07118-4
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- biologické modely MeSH
- druhová specificita MeSH
- geografická kartografie * MeSH
- lesy * MeSH
- stromy * klasifikace fyziologie MeSH
- tropické klima MeSH
- Publikační typ
- časopisecké články MeSH
Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.
Bayreuth Center of Ecology and Environmental Research University of Bayreuth Bayreuth Germany
Departamento de Ciencias Forestales Universidad Nacional de Colombia Sede Medellín Medellín Colombia
Department of Biological Sciences National Sun Yat sen University Kaohsiung Taiwan
Department of Biological Sciences National University of Singapore Singapore Singapore
Department of Biology Indiana University Bloomington IN USA
Department of Biology University of Wisconsin Green Bay Green Bay WI USA
Department of Botany and Plant Pathology Oregon State University Corvallis OR USA
Department of Ecology and Evolutionary Biology Tulane University New Orleans LA USA
Department of Ecology Evolution and Environmental Biology Columbia University New York NY USA
Department of Ecology University of São Paulo São Paulo Brazil
Department of Environmental Science University of Puerto Rico Rio Piedras USA
Department of Forest Biology Faculty of Forestry Kasetsart University Bangkok Thailand
Department of Forest Ecology Silva Tarouca Research Institute Brno Czech Republic
Department of Forest Management University of Montana Missoula MT USA
Department of Natural Resources and Environmental Studies National Donghwa University Hualien Taiwan
Department of Plant Science University of Buea Buea Cameroon
Department of Science and Technology Uva Wellassa University Badulla Sri Lanka
Department of Wildland Resources Utah State University Logan UT USA
Ecosystem Analysis and Simulation Lab University of Bayreuth Bayreuth Germany
Environmental Studies Department University of California Santa Cruz Santa Cruz CA USA
Forest Global Earth Observatory Smithsonian Tropical Research Institute Panama City Panama
Forest Global Earth Observatory Smithsonian Tropical Research Institute Washington DC USA
Forest Research Institute Malaysia Kepong Malaysia
Global Earth Observatory Smithsonian Tropical Research Institute Washington DC USA
Graduate School of Science Osaka Metropolitan University Osaka Japan
Institute of Environmental Sciences Leiden University Leiden The Netherlands
Institute of Molecular Biosciences Mahidol University Nakhon Pathom Thailand
Instituto Amazónico de Investigaciones Científicas Sinchi Bogotá Colombia
Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Bogotá Colombia
National Biobank of Thailand National Science and Technology Development Agency Bangkok Thailand
Sarawak Forest Department Kuching Malaysia
School of Forest Fisheries and Geomatics Sciences University of Florida Gainesville FL USA
School of the Environment Washington State University Pullman WA USA
School of the Environment Yale University New Haven CT USA
Smithsonian Environmental Research Center Edgewater MD USA
Smithsonian Tropical Research Institute Panama City Panama
Theoretical Ecology University of Regensburg Regensburg Germany
UK Centre for Ecology and Hydrology Bush Estate Penicuik UK
Zobrazit více v PubMed
Comita LS, et al. Testing predictions of the Janzen–Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. J. Ecol. 2014;102:845–856. doi: 10.1111/1365-2745.12232. PubMed DOI PMC
Song X, Lim JY, Yang J, Luskin MS. When do Janzen-Connell effects matter? A phylogenetic meta-analysis of conspecific negative distance and density dependence experiments. Ecol. Lett. 2021;24:608–620. doi: 10.1111/ele.13665. PubMed DOI
Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP. Asymmetric density dependence shapes species abundances in a tropical tree community. Science. 2010;329:330–332. doi: 10.1126/science.1190772. PubMed DOI
Janzen DH. Herbivores and the number of tree species in tropical forests. Am. Nat. 1970;104:501. doi: 10.1086/282687. DOI
Connell, J. H. in Dynamics of Populations (eds den Boer, P. J. & Gradwell, G. R.) 298–312 (Centre for Agricultural Publishing and Documentation, 1971).
Adler PB, Hille Ris Lambers J, Levine JM. A niche for neutrality. Ecol. Lett. 2007;10:95–104. doi: 10.1111/j.1461-0248.2006.00996.x. PubMed DOI
Chesson P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 2000;31:343–366. doi: 10.1146/annurev.ecolsys.31.1.343. DOI
LaManna JA, et al. Plant diversity increases with the strength of negative density dependence at the global scale. Science. 2017;356:1389–1392. doi: 10.1126/science.aam5678. PubMed DOI
Johnson DJ, Beaulieu WT, Bever JD, Clay K. Conspecific negative density dependence and forest diversity. Science. 2012;336:904–907. doi: 10.1126/science.1220269. PubMed DOI
Detto M, Visser MD, Wright SJ, Pacala SW. Bias in the detection of negative density dependence in plant communities. Ecol. Lett. 2019;22:1923–1939. doi: 10.1111/ele.13372. PubMed DOI
Chisholm RA, Fung T. Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science. 2018;360:eaar4685. doi: 10.1126/science.aar4685. PubMed DOI
Hülsmann L, Hartig F. Comment on “Plant diversity increases with the strength of negative density dependence at the global scale”. Science. 2018;360:eaar2435. doi: 10.1126/science.aar2435. PubMed DOI
Mack KML, Bever JD. Coexistence and relative abundance in plant communities are determined by feedbacks when the scale of feedback and dispersal is local. J. Ecol. 2014;102:1195–1201. doi: 10.1111/1365-2745.12269. PubMed DOI PMC
May F, Wiegand T, Huth A, Chase JM. Scale-dependent effects of conspecific negative density dependence and immigration on biodiversity maintenance. Oikos. 2020;129:1072–1083. doi: 10.1111/oik.06785. DOI
Stump SM, Comita LS. Interspecific variation in conspecific negative density dependence can make species less likely to coexist. Ecol. Lett. 2018;21:1541–1551. doi: 10.1111/ele.13135. PubMed DOI
May RM. The search for patterns in the balance of nature: advances and retreats. Ecology. 1986;67:1115–1126. doi: 10.2307/1938668. DOI
Keil P, Chase JM. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 2019;3:390–399. doi: 10.1038/s41559-019-0799-0. PubMed DOI
Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 2009;40:245–269. doi: 10.1146/annurev.ecolsys.39.110707.173430. DOI
Adler PB, et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 2018;21:1319–1329. doi: 10.1111/ele.13098. PubMed DOI
Broekman MJE, et al. Signs of stabilisation and stable coexistence. Ecol. Lett. 2019;22:1957–1975. doi: 10.1111/ele.13349. PubMed DOI
Yenni G, Adler PB, Ernest SKM. Strong self-limitation promotes the persistence of rare species. Ecology. 2012;93:456–461. doi: 10.1890/11-1087.1. PubMed DOI
HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM. Rethinking community assembly through the lens of coexistence theory. Annu. Rev. Ecol. Evol. Syst. 2012;43:227–248. doi: 10.1146/annurev-ecolsys-110411-160411. DOI
Hille Ris Lambers J, Clark JS, Beckage B. Density-dependent mortality and the latitudinal gradient in species diversity. Nature. 2002;417:732. doi: 10.1038/nature00809. PubMed DOI
Givnish TJ. On the causes of gradients in tropical tree diversity. J. Ecol. 1999;87:193–210. doi: 10.1046/j.1365-2745.1999.00333.x. DOI
Hülsmann L, Chisholm RA, Hartig F. Is variation in conspecific negative density dependence driving tree diversity patterns at large scales? Trends Ecol. Evol. 2021;36:151–163. doi: 10.1016/j.tree.2020.10.003. PubMed DOI
Cannon PG, Edwards DP, Freckleton RP. Asking the wrong question in explaining tropical diversity. Trends Ecol. Evol. 2021;36:482–484. doi: 10.1016/j.tree.2021.02.011. PubMed DOI
Hyatt LA, et al. The distance dependence prediction of the Janzen–Connell hypothesis: a meta-analysis. Oikos. 2003;103:590–602. doi: 10.1034/j.1600-0706.2003.12235.x. DOI
Bagchi R, et al. Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature. 2014;506:85. doi: 10.1038/nature12911. PubMed DOI
Freckleton RP, Watkinson AR, Green RE, Sutherland WJ. Census error and the detection of density dependence. J. Anim. Ecol. 2006;75:837–851. doi: 10.1111/j.1365-2656.2006.01121.x. PubMed DOI
Davies SJ, et al. ForestGEO: understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 2021;253:108907. doi: 10.1016/j.biocon.2020.108907. DOI
Mood C. Logistic regression: why we cannot do what we think we can do, and what we can do about it. Eur. Sociol. Rev. 2010;26:67–82. doi: 10.1093/esr/jcp006. DOI
Swamy V, Terborgh JW. Distance-responsive natural enemies strongly influence seedling establishment patterns of multiple species in an Amazonian rain forest. J. Ecol. 2010;98:1096–1107. doi: 10.1111/j.1365-2745.2010.01686.x. DOI
Yenni G, Adler PB, Ernest SKM. Do persistent rare species experience stronger negative frequency dependence than common species? Global Ecol. Biogeogr. 2017;26:513–523. doi: 10.1111/geb.12566. DOI
Hedges LV, Vevea JL. Fixed-and random-effects models in meta-analysis. Psychol. Methods. 1998;3:486. doi: 10.1037/1082-989X.3.4.486. DOI
Grainger TN, Levine JM, Gilbert B. The invasion criterion: a common currency for ecological research. Trends Ecol. Evol. 2019;34:925–935. doi: 10.1016/j.tree.2019.05.007. PubMed DOI
Freckleton RP, Lewis OT. Pathogens, density dependence and the coexistence of tropical trees. Proc. R. Soc. B. 2006;273:2909–2916. doi: 10.1098/rspb.2006.3660. PubMed DOI PMC
Chisholm RA, Muller-Landau HC. A theoretical model linking interspecific variation in density dependence to species abundances. Theor. Ecol. 2011;4:241–253. doi: 10.1007/s12080-011-0119-z. DOI
Xu M, Wang Y, Yu S. Conspecific negative density dependence decreases with increasing species abundance. Ecosphere. 2015;6:1–11.
Zhu K, Woodall CW, Monteiro JVD, Clark JS. Prevalence and strength of density‐dependent tree recruitment. Ecology. 2015;96:2319–2327. doi: 10.1890/14-1780.1. PubMed DOI
Chen L, et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science. 2019;366:124–128. doi: 10.1126/science.aau1361. PubMed DOI
Zhu Y, et al. Density-dependent survival varies with species life-history strategy in a tropical forest. Ecol. Lett. 2018;21:506–515. doi: 10.1111/ele.12915. PubMed DOI
Comita LS, Stump SM. Natural enemies and the maintenance of tropical tree diversity: recent insights and implications for the future of biodiversity in a changing world. Ann. Missouri Bot. Gard. 2020;105:377–392. doi: 10.3417/2020591. DOI
Rüger N, Berger U, Hubbell SP, Vieilledent G, Condit R. Growth strategies of tropical tree species: disentangling light and size effects. PLoS One. 2011;6:e25330. doi: 10.1371/journal.pone.0025330. PubMed DOI PMC
Stump SM, Chesson P. Distance-responsive predation is not necessary for the Janzen–Connell hypothesis. Theor. Popul. Biol. 2015;106:60–70. doi: 10.1016/j.tpb.2015.10.006. PubMed DOI
Alvarez-Loayza P, Terborgh J. Fates of seedling carpets in an Amazonian floodplain forest: intra-cohort competition or attack by enemies? J. Ecol. 2011;99:1045–1054. doi: 10.1111/j.1365-2745.2011.01835.x. DOI
Germain SJ, Lutz JA. Shared friends counterbalance shared enemies in old forests. Ecology. 2021;102:e03495. doi: 10.1002/ecy.3495. PubMed DOI
Comita LS. How latitude affects biotic interactions. Science. 2017;356:1328–1329. doi: 10.1126/science.aan6356. PubMed DOI
Marden JH, et al. Ecological genomics of tropical trees: how local population size and allelic diversity of resistance genes relate to immune responses, cosusceptibility to pathogens, and negative density dependence. Mol. Ecol. 2017;26:2498–2513. doi: 10.1111/mec.13999. PubMed DOI
Song XY, et al. The strength of density-dependent mortality is contingent on climate and seedling size. J. Veg. Sci. 2018;29:662–670. doi: 10.1111/jvs.12645. DOI
Stump SM, Comita LS. Differences among species in seed dispersal and conspecific neighbor effects can interact to influence coexistence. Theor. Ecol. 2020;13:551–581. doi: 10.1007/s12080-020-00468-5. DOI
R Core Team. R: A Language and Environment for Statistical Computinghttps://www.R-project.org/ (R Foundation for Statistical Computing, 2022).
Zhu Y, Comita LS, Hubbell SP, Ma K, Shefferson R. Conspecific and phylogenetic density‐dependent survival differs across life stages in a tropical forest. J. Ecol. 2015;103:957–966. doi: 10.1111/1365-2745.12414. DOI
Johnson DJ, et al. Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology. 2014;95:2493–2503. doi: 10.1890/13-2098.1. DOI
Hubbell SP, Ahumada JA, Condit R, Foster RB. Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecol. Res. 2001;16:859–875. doi: 10.1046/j.1440-1703.2001.00445.x. DOI
Lebrija-Trejos E, Wright SJ, Hernández A, Reich PB. Does relatedness matter? Phylogenetic density-dependent survival of seedlings in a tropical forest. Ecology. 2014;95:940–951. doi: 10.1890/13-0623.1. PubMed DOI
Ramage BS, Mangana IJ. Conspecific negative density dependence in American beech. For. Ecosyst. 2017;4:8. doi: 10.1186/s40663-017-0094-y. DOI
Laubach ZM, Murray EJ, Hoke KL, Safran RJ, Perng W. A biologist’s guide to model selection and causal inference. Proc. R. Soc. B. 2021;288:20202815. doi: 10.1098/rspb.2020.2815. PubMed DOI PMC
Fortin M, Bédard S, DeBlois J, Meunier S. Predicting individual tree mortality in northern hardwood stands under uneven-aged management in southern Québec, Canada. Ann. For. Sci. 2008;65:205. doi: 10.1051/forest:2007088. DOI
Wood SN, Pya N, Säfken B. Smoothing parameter and model selection for general smooth models. J. Am. Stat. Assoc. 2016;111:1548–1563. doi: 10.1080/01621459.2016.1180986. DOI
Wood, S. mgcv: Mixed GAM computation vehicle with automatic smoothness estimation. R version 1.8-34 https://CRAN.R-project.org/package=mgcv (2015).
Wright SJ, et al. Functional traits and the growth–mortality trade‐off in tropical trees. Ecology. 2010;91:3664–3674. doi: 10.1890/09-2335.1. PubMed DOI
King DA, Davies SJ, Noor NSM. Growth and mortality are related to adult tree size in a Malaysian mixed dipterocarp forest. For. Ecol. Manag. 2006;223:152–158. doi: 10.1016/j.foreco.2005.10.066. DOI
Wooldridge, J. M. Econometric Analysis of Cross Section and Panel Data (MIT Press, 2010).
Breen R, Karlson KB, Holm A. Interpreting and understanding logits, probits, and other nonlinear probability models. Annu. Rev. Sociol. 2018;44:39–54. doi: 10.1146/annurev-soc-073117-041429. DOI
Egger M, Smith GD, Phillips AN. Meta-analysis: principles and procedures. Br. Med. J. 1997;315:1533–1537. doi: 10.1136/bmj.315.7121.1533. PubMed DOI PMC
Wood SN. On confidence intervals for generalized additive models based on penalized regression splines. Aust. N. Z. J. Stat. 2006;48:445–464. doi: 10.1111/j.1467-842X.2006.00450.x. DOI
Nakagawa S, Noble DW, Senior AM, Lagisz M. Meta-evaluation of meta-analysis: ten appraisal questions for biologists. BMC Biol. 2017;15:18. doi: 10.1186/s12915-017-0357-7. PubMed DOI PMC
Nishizawa K, Shinohara N, Cadotte MW, Mori AS. The latitudinal gradient in plant community assembly processes: a meta‐analysis. Ecol. Lett. 2022;25:1711–1724. doi: 10.1111/ele.14019. PubMed DOI
Lamanna C, et al. Functional trait space and the latitudinal diversity gradient. Proc. Natl Acad. Sci. USA. 2014;111:13745–13750. doi: 10.1073/pnas.1317722111. PubMed DOI PMC
Viechtbauer W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010;36:1–48. doi: 10.18637/jss.v036.i03. DOI
Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R version 0.4.6 https://CRAN.R-project.org/package=DHARMa (2022).
Viechtbauer W, Cheung MWL. Outlier and influence diagnostics for meta‐analysis. Res. Synth. Methods. 2010;1:112–125. doi: 10.1002/jrsm.11. PubMed DOI
Rüger N, et al. Beyond the fast–slow continuum: demographic dimensions structuring a tropical tree community. Ecol. Lett. 2018;21:1075–1084. doi: 10.1111/ele.12974. PubMed DOI
Rüger N, et al. Demographic trade-offs predict tropical forest dynamics. Science. 2020;368:165–168. doi: 10.1126/science.aaz4797. PubMed DOI
Miranda A, Carvalho LM, Dionisio F. Lower within-community variance of negative density dependence increases forest diversity. PLoS One. 2015;10:e0127260. doi: 10.1371/journal.pone.0127260. PubMed DOI PMC