The global distribution and drivers of wood density and their impact on forest carbon stocks

. 2024 Dec ; 8 (12) : 2195-2212. [epub] 20241015

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39406932
Odkazy

PubMed 39406932
PubMed Central PMC11618071
DOI 10.1038/s41559-024-02564-9
PII: 10.1038/s41559-024-02564-9
Knihovny.cz E-zdroje

The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 million forest inventory plots alongside wood density data from 10,703 tree species to create a spatially explicit understanding of the global wood density distribution and its drivers. Our findings reveal a pronounced latitudinal gradient, with wood in tropical forests being up to 30% denser than that in boreal forests. In both angiosperms and gymnosperms, hydrothermal conditions represented by annual mean temperature and soil moisture emerged as the primary factors influencing the variation in wood density globally. This indicates similar environmental filters and evolutionary adaptations among distinct plant groups, underscoring the essential role of abiotic factors in determining wood density in forest ecosystems. Additionally, our study highlights the prominent role of disturbance, such as human modification and fire risk, in influencing wood density at more local scales. Factoring in the spatial variation of wood density notably changes the estimates of forest carbon stocks, leading to differences of up to 21% within biomes. Therefore, our research contributes to a deeper understanding of terrestrial biomass distribution and how environmental changes and disturbances impact forest ecosystems.

5 N Sukachev Institute of Forest FRC KSC Siberian Branch of the Russian Academy of Sciences Krasnoyarsk Russian Federation

Agricultural High School Polytechnic Institute of Viseu Viseu Portugal

AgroParisTech UMR AMAP Cirad CNRS INRA IRD Université de Montpellier Montpellier France

AMAP Univ Montpellier CIRAD CNRS INRAE IRD Montpellier France

AMAP Univ Montpellier Montpellier France

Andes to Amazon Biodiversity Program Madre de Dios Peru

Bavarian State Institute of Forestry Freising Germany

Biodiversity and Natural Resources Program International Institute for Applied Systems Analysis Laxenburg Austria

Biology Centre of the Czech Academy of Sciences Institute of Entomology Ceske Budejovice Czech Republic

Biology Department Centre for Structural and Functional Genomics Concordia University Montreal Quebec Canada

Botanical Garden of Ural Branch of Russian Academy of Sciences Ural State Forest Engineering University Yekaterinburg Russian Federation

CAVElab Computational and Applied Vegetation Ecology Department of Environment Ghent University Ghent Belgium

Center for Biodiversity Dynamics in a Changing World Department of Biology Aarhus University Aarhus Denmark

Center for Ecological Dynamics in a Novel Biosphere Department of Biology Aarhus University Aarhus Denmark

Center for Forest Ecology and Productivity Russian Academy of Sciences Moscow Russian Federation

Center for Natural Climate Solutions Conservation International Arlington TX USA

Center for Tropical Research Institute of the Environment and Sustainability UCLA Los Angeles CA USA

Centre for Agricultural Research in Suriname Paramaribo Suriname

Centre for Conservation Science The Royal Society for the Protection of Birds Sandy UK

Centre for Forest Research Université du Québec à Montréal Montréal Québec Canada

Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Centre for Invasion Biology Department of Mathematical Sciences National Institute for Theoretical and Computational Sciences Stellenbosch University Stellenbosch South Africa

Centre for the Research and Technology of Agro Environmental and Biological Sciences CITAB UTAD Quinta de Prados Vila Real Portugal

Centro Agricoltura Alimenti Ambiente University of Trento San Michele All'adige Italy

Centro de Ciências Biológicas e da Natureza Universidade Federal do Acre Rio Branco Brazil

Centro Multidisciplinar Universidade Federal do Acre Rio Branco Brazil

Chair of Forest Growth and Yield Science Department of Life Science Systems TUM School of Life Sciences Technical University of Munich Freising Germany

CIRAD CNRS INRAE IRD Montpellier France

Cirad UMR EcoFoG Campus Agronomique Kourou French Guiana

Cirad UPR Forêts et Sociétés University of Montpellier Montpellier France

Climate Fire and Carbon Cycle Sciences USDA Forest Service Durham NC USA

Colegio de Profesionales Forestales de Cochabamba Cochabamba Bolivia

Compensation International S A Ci Progress GreenLife Bogotá Colombia

CTFS ForestGEO Smithsonian Tropical Research Institute Panama City Panama

Departamento de Biología Universidad de la Serena La Serena Chile

Departamento de Ciências Biológicas Universidade do Estado de Mato Grosso Nova Xavantina Brazil

Departamento de Ecologia Universidade Federal do Rio Grande do Norte Natal Brazil

Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Mexico City Mexico

Departamento de Gestión Forestal y su Medio Ambiente Universidad de Chile Santiago Chile

Department of Agricultural and Forest Sciences and Engineering University of Lleida Lleida Spain

Department of Agricultural Food Environmental and Animal Sciences University of Udine Udine Italy

Department of Agriculture Food Environment and Forest University of Firenze Florence Italy

Department of Agriculture Forestry and Bioresources Seoul National University Seoul South Korea

Department of Aquatic Ecology and Environmental Biology Institute for Water and Wetland Research Radboud University Nijmegen the Netherlands

Department of Biological Geological and Environmental Sciences University of Bologna Bologna Italy

Department of Biology Stanford University Stanford CA USA

Department of Biology University of Florence Florence Italy

Department of Biology University of Missouri St Louis St Louis MO USA

Department of Biology University of Oxford Oxford UK

Department of Biology West Virginia University Morgantown WV USA

Department of Botany Banaras Hindu University Varanasi India

Department of Botany Dr Harisingh Gour Vishwavidyalaya Sagar India

Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic

Department of Ecology and Environmental Sciences Pondicherry University Puducherry India

Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA

Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA

Department of Ecology State Key Laboratory of Biocontrol School of Life Sciences Sun Yat sen University Guangzhou China

Department of Environment and Development Studies United International University Dhaka Bangladesh

Department of Environment and Geography University of York York UK

Department of Evolutionary Anthropology Duke University Durham NC USA

Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland

Department of Forest and Wood Science University of Stellenbosch Stellenbosch South Africa

Department of Forest Engineering Universidade Regional de Blumenau Blumenau Brazil

Department of Forest Management Dendrometry and Forest Economics Warsaw University of Life Sciences Warsaw Poland

Department of Forest Resources University of Minnesota St Paul MN USA

Department of Forest Science Tokyo University of Agriculture Tokyo Japan

Department of Forest Sciences Luiz de Queiroz College of Agriculture University of São Paulo Piracicaba Brazil

Department of Forestry and Environment National Polytechnic Institute Yamoussoukro Côte d'Ivoire

Department of Forestry and Natural Resources Purdue University West Lafayette IN USA

Department of Game Management and Forest Protection Poznań University of Life Sciences Poznań Poland

Department of Genetics Evolution and Environment University College London London UK

Department of Geography Environment and Geomatics University of Guelph Guelph Ontario Canada

Department of Geography Remote Sensing Laboratories University of Zürich Zurich Switzerland

Department of Geography University College London London UK

Department of Geomatics Forest Research Institute Sękocin Stary Poland

Department of Geosciences and Natural Resource Management University of Copenhagen Copenhagen Denmark

Department of Natural Sciences Manchester Metropolitan University Manchester UK

Department of Physical and Biological Sciences The College of Saint Rose Albany NY USA

Department of Physical and Environmental Sciences Colorado Mesa University Grand Junction CO USA

Department of Plant Biology Institute of Biology University of Campinas Campinas Brazil

Department of Plant Sciences and Conservation Research Institute University of Cambridge Cambridge UK

Department of Plant Systematics University of Bayreuth Bayreuth Germany

Department of Spatial Regulation GIS and Forest Policy Institute of Forestry Belgrade Serbia

Department of Wetland Ecology Institute for Geography and Geoecology Karlsruhe Institute for Technology Karlsruhe Germany

Department of Wildlife Management College of African Wildlife Management Mweka Tanzania

Department of Zoology University of Oxford Oxford UK

Division of Forest and Forest Resources Norwegian Institute of Bioeconomy Research Ås Norway

Division of Forest Resources Information Korea Forest Promotion Institute Seoul South Korea

Division of Forestry and Natural Resources West Virginia University Morgantown WV USA

Ecole de Foresterie et Ingénierie du Bois Université Nationale d'Agriculture Kétou Benin

Embrapa Recursos Genéticos e Biotecnologia Brasilia Brazil

Environmental and Life Sciences Faculty of Science Universiti Brunei Darussalam Bandar Seri Begawan Brunei Darussalam

Environmental Change Institute School of Geography and the Environment Oxford UK

Environmental Studies and Research Center University of Campinas Campinas Brazil

European Commission Joint Research Center Ispra Italy

Facultad de Ciencias Forestales y Ambientales Universidad Juárez del Estado de Durango Durango Mexico

Faculty of Biology Białowieża Geobotanical Station University of Warsaw Białowieża Poland

Faculty of Environmental Sciences and Natural Resource Management Norwegian University of Life Sciences Ås Norway

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic

Faculty of Forestry Qingdao Agricultural University Qingdao China

Faculty of Natural Resources Management Lakehead University Thunder Bay Ontario Canada

Field Museum of Natural History Chicago IL USA

Flamingo Land Ltd Kirby Misperton UK

Forest Ecology and Forest Management Group Wageningen University and Research Wageningen the Netherlands

Forest Research Institute Malaysia Kuala Lumpur Malaysia

Forest Research Institute University of the Sunshine Coast Sippy Downs Queensland Australia

Forest Science and Technology Centre of Catalonia Solsona Spain

Forestry Consultant Grosseto Italy

Forestry Division Food and Agriculture Organization of the United Nations Rome Italy

Forestry Faculty Mytischi Branch of Bauman Moscow State Technical University Mytischi Russian Federation

Forestry School Tecnológico de Costa Rica TEC Cartago Costa Rica

Fundacion Con Vida Universidad Nacional Abierta y a Distancia Medellin Colombia

Geobotany Faculty of Biology University of Freiburg Freiburg im Breisgau Germany

Geography Faculty of Environment Science and Economy University of Exeter Exeter UK

GIP Ecofor Paris France

Glick Designs LLC Hadley MA USA

Global Change Research Institute CAS Brno Czech Republic

Graduate School of Agriculture Kyoto University Kyoto Japan

Guyana Forestry Commission Georgetown French Guiana

Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia

Helmholtz GFZ German Research Centre for Geosciences Remote Sensing and Geoinformatics Section Telegrafenberg Potsdam Germany

IFER Institute of Forest Ecosystem Research Jilove u Prahy Czech Republic

Independent Researcher Sommersbergseestrasse Bad Aussee Austria

Info Flora Geneva Switzerland

Institut Agronomique néo Calédonien Nouméa New Caledonia

Institute for Global Change Biology and School for Environment and Sustainability University of Michigan Ann Arbor MI USA

Institute for World Forestry University of Hamburg Hamburg Germany

Institute of Biology Geobotany and Botanical Garden Martin Luther University Halle Wittenberg Halle Wittenberg Germany

Institute of Botany Department of Integrative Biology and Biodiversity Research University of Natural Resources and Life Sciences Vienna Vienna Austria

Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic

Institute of Dendrology Polish Academy of Sciences Kórnik Poland

Institute of Environmental Sciences Leiden University Leiden the Netherlands

Institute of Forestry and Engineering Estonian University of Life Sciences Tartu Estonia

Institute of Forestry Belgrade Serbia

Institute of Integrative Biology ETH Zurich Zurich Switzerland

Institute of Plant Sciences University of Bern Bern Switzerland

Institute of Tropical Forest Conservation Mbarara University of Sciences and Technology Mbarara Uganda

Instituto de Investigaciones de la Amazonía Peruana Iquitos Peru

Instituto de Silvicultura e Industria de la Madera Universidad Juárez del Estado de Durango Durango Mexico

Instituto Nacional de Pesquisas da Amazônia Manaus Brazil

Instituto Nacional de Tecnología Agropecuaria Río Gallegos Argentina

Interdisciplinary Program in Agricultural and Forest Meteorology Seoul National University Seoul South Korea

International Institute for Applied Systems Analysis Laxenburg Austria

IRET Herbier National du Gabon Libreville Gabon

Isotope Bioscience Laboratory ISOFYS Ghent University Ghent Belgium

Iwokrama International Centre for Rainforest Conservation and Development Georgetown French Guiana

Jardín Botánico de Medellín Medellin Colombia

Jardín Botánico de Missouri Oxapampa Peru

Key Laboratory of Tropical Biological Resources Ministry of Education School of Life and Pharmaceutical Sciences Hainan University Haikou China

Laboratório de Dendrologia e Silvicultura Tropical Centro de Formação em Ciências Agroflorestais Universidade Federal do Sul da Bahia Itabuna Brazil

LINCGlobal Museo Nacional de Ciencias Naturales CSIC Madrid Spain

Manaaki Whenua Landcare Research Lincoln New Zealand

Museo de Historia natural Noel kempff Mercado Santa Cruz Bolivia

Museu Paraense Emílio Goeldi Coordenação de Ciências da Terra e Ecologia Belém Brazil

National Biodiversity Future Center Palermo Italy

National Center for Agro Meteorology Seoul South Korea

National Forest Centre Forest Research Institute Zvolen Zvolen Slovakia

National Institute of Amazonian Research Manaus Brazil

Natural Resources Institute Finland Joensuu Finland

Natural Science Department Universidade Regional de Blumenau Blumenau Brazil

Naturalis Biodiversity Center Leiden the Netherlands

Negaunee Integrative Research Center Field Museum of Natural History Chicago IL USA

Nicholas School of the Environment Duke University Durham NC USA

Peoples Friendship University of Russia Moscow Russian Federation

Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands

Plant Systematic and Ecology Laboratory Department of Biology Higher Teachers' Training College University of Yaoundé 1 Yaoundé Cameroon

Polish State Forests Coordination Center for Environmental Projects Warsaw Poland

Pontificia Universidad Católica del Ecuador Quito Ecuador

Proceedings of the National Academy of Sciences Washington DC USA

Programa de doctorado en Ingeniería para el desarrollo rural y civil Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela Santiago de Compostela Spain

Programa de Pós graduação em Biologia Vegetal Instituto de Biologia Universidade Estadual de Campinas Campinas Brazil

Quantitative Biodiversity Dynamics Department of Biology Utrecht University Utrecht the Netherlands

Queensland Herbarium and Biodiversity Science Department of Environment and Science Toowong Queensland Australia

Research and Innovation Center Fondazione Edmund Mach San Michele All'adige Italy

Research Center of Forest Management Engineering of State Forestry and Grassland Administration Beijing Forestry University Beijing China

Research Institute for Agriculture and Life Sciences Seoul National University Seoul South Korea

Rhino and Forest Fund e 5 Kehl Germany

Royal Botanic Garden Edinburgh Edinburgh UK

Santa Catarina State University Lages Brazil

School of Biological and Behavioural Sciences Queen Mary University of London London UK

School of Biological Sciences University of Bristol Bristol UK

School of Forestry and Environmental Studies Yale University New Haven CT USA

School of Geography University of Leeds Leeds UK

School of Social Sciences Western Sydney University Penrith New South Wales Australia

Section for Ecoinformatics and Biodiversity Department of Biology Aarhus University Aarhus Denmark

Servicios Ecosistémicos y Cambio Climático Fundación Con Vida and Corporación COL TREE Medellín Colombia

Siberian Federal University Krasnoyarsk Russian Federation

Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany

Silviculture Research Institute Vietnamese Academy of Forest Sciences Hanoi Vietnam

Spatial Ecology and Conservation Lab School of Forest Fisheries and Geomatics Sciences University of Florida Gainesville FL USA

Ștefan cel Mare University of Suceava Suceava Romania

Sustainable Forest Management Research Institute iuFOR University Valladolid Valladolid Spain

Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

TERRA Teach and Research Centre Gembloux Agro Bio Tech University of Liege Liege Belgium

The Nature Conservancy Boulder CO USA

The Santa Fe Institute Santa Fe NM USA

Theoretical Ecology Unit African Institute for Mathematical Sciences Cape Town South Africa

Tropenbos International Wageningen the Netherlands

Tropical Biodiversity MUSE Museo delle Scienze Trento Italy

Tropical Forests and People Research Centre University of the Sunshine Coast Sippy Downs Queensland Australia

UFR Biosciences University Félix Houphouët Boigny Abidjan Côte d'Ivoire

UNELLEZ Guanare Programa de Ciencias del Agro y el Mar Herbario Universitario Guanare Venezuela

UniSA STEM and Future Industries Institute University of South Australia Adelaide South Australia Australia

Universidad del Tolima Ibagué Colombia

Universidad Estatal Amazónica Puyo Ecuador

Universidad Nacional de la Amazonía Peruana Iquitos Peru

Universidad Nacional de San Antonio Abad del Cusco Cusco Peru

Université de Lorraine AgroParisTech INRAE Silva Nancy France

Vicerrectoría de Investigación y Postgrado Universidad de La Frontera Temuco Chile

Wageningen University and Research Wageningen the Netherlands

Wild Chimpanzee Foundation Liberia Office Monrovia Liberia

Wildlife Conservation Society Vientiane Laos

Zobrazit více v PubMed

Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett.12, 351–366 (2009). PubMed

Swenson, N. G. & Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot.94, 451–459 (2007). PubMed

Kraft, N. J. B., Metz, M. R., Condit, R. S. & Chave, J. The relationship between wood density and mortality in a global tropical forest data set. New Phytol.188, 1124–1136 (2010). PubMed

Pérez-Ramos, I. M., Matías, L., Gómez-Aparicio, L. & Godoy, Ó. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat. Commun.10, 2555 (2019). PubMed PMC

Reich, P. B. et al. The evolution of plant functional variation: traits, spectra and strategies. Int. J. Plant Sci.164, S143–S164 (2003).

Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol.21, 261–268 (2006). PubMed

Bouchard, E. et al. Global patterns and environmental drivers of forest functional composition. Glob. Ecol. Biogeogr.33, 303–324 (2024).

Reis, S. M. et al. Climate and crown damage drive tree mortality in southern Amazonian edge forests. J. Ecol.110, 876–888 (2022).

Poorter, L. et al. Wet and dry tropical forests show opposite successional pathways in wood density but converge over time. Nat. Ecol. Evol.3, 928–934 (2019). PubMed

Chave, J. et al. Regional and phylogenetic variation of wood density across 2456 neotropical tree species. Ecol. Appl.16, 2356–2367 (2006). PubMed

Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA108, 9899–9904 (2011). PubMed PMC

Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr.23, 297–310 (2014).

Santoro, M. et al. The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data13, 3927–3950 (2021).

Baker, T. R. et al. Variation in wood density determines spatial patterns inAmazonian forest biomass. Glob. Change Biol.10, 545–562 (2004).

Preston, K. A., Cornwell, W. K. & DeNoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol.170, 807–818 (2006). PubMed

Swenson, N. G. & Zambrano, J. Why wood density varies across communities. J. Veg. Sci.28, 4–6 (2017).

Slik, J. W. F. et al. Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Glob. Ecol. Biogeogr.19, 50–60 (2010).

Crivellaro, A., Piermattei, A., Dolezal, J., Dupree, P. & Büntgen, U. Biogeographic implication of temperature-induced plant cell wall lignification. Commun. Biol.5, 767 (2022). PubMed PMC

Gleason, S. M. et al. Weak tradeoff between xylem safety and xylem‐specific hydraulic efficiency across the world’s woody plant species. New Phytol.209, 123–136 (2016). PubMed

Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature491, 752–755 (2012). PubMed

Johnson, D. M., Katul, G. & Domec, J. Catastrophic hydraulic failure and tipping points in plants. Plant Cell Environ.45, 2231–2266 (2022). PubMed PMC

McDowell, N. G. et al. Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nat. Rev. Earth Environ.3, 294–308 (2022).

Johnson, D. M. et al. Co‐occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant Cell Environ.41, 576–588 (2018). PubMed

Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D. & McCulloh, K. A. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia126, 457–461 (2001). PubMed

Sperry, J. S., Hacke, U. G. & Pittermann, J. Size and function in conifer tracheids and angiosperm vessels. Am. J. Bot.93, 1490–1500 (2006). PubMed

Larjavaara, M. & Muller-Landau, H. C. Rethinking the value of high wood density. Funct. Ecol.24, 701–705 (2010). PubMed

Niklas, K. J. & Spatz, H. Worldwide correlations of mechanical properties and green wood density. Am. J. Bot.97, 1587–1594 (2010). PubMed

Köhler, P. & Huth, A. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests. Biogeosciences7, 2531–2543 (2010).

Vibrans, A. C. et al. Unprecedented large-area turnover estimates for the subtropical Brazilian Atlantic Forest based on systematically-gathered data. Ecol. Manag.505, 119902 (2022).

Rodrigues, A. V. et al. A test of the fast–slow plant economy hypothesis in a subtropical rain forest. Plant Ecol. Divers.14, 267–277 (2021).

Pyles, M. V. et al. Human impacts as the main driver of tropical forest carbon. Sci. Adv.8, eabl7968 (2022). PubMed PMC

Haddad, N. M. et al. Species’ traits predict the effects of disturbance and productivity on diversity. Ecol. Lett.11, 348–356 (2008). PubMed

Sommerfeld, A. et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat. Commun.9, 4355 (2018). PubMed PMC

Martin, A. R., Erickson, D. L., Kress, W. J. & Thomas, S. C. Wood nitrogen concentrations in tropical trees: phylogenetic patterns and ecological correlates. New Phytol.204, 484–495 (2014). PubMed

Liang, X., Ye, Q., Liu, H. & Brodribb, T. J. Wood density predicts mortality threshold for diverse trees. New Phytol.229, 3053–3057 (2021). PubMed

Macdonald, E. & Hubert, J. A review of the effects of silviculture on timber quality of Sitka spruce. Forestry75, 107–138 (2002).

Barlow, J. et al. Anthropogenic disturbance in tropical forests can double biodiversity loss from deforestation. Nature535, 144 (2016). PubMed

Wang, J. A., Baccini, A., Farina, M., Randerson, J. T. & Friedl, M. A. Disturbance suppresses the aboveground carbon sink in North American boreal forests. Nat. Clim. Change11, 435–441 (2021).

Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science372, 280–283 (2021). PubMed

Slik, J. W. F. et al. Wood density as a conservation tool: quantification of disturbance and identification of conservation-priority areas in tropical forests. Conserv. Biol.22, 1299–1308 (2008). PubMed

Berenguer, E. et al. Seeing the woods through the saplings: using wood density to assess the recovery of human-modified Amazonian forests. J. Ecol.106, 2190–2203 (2018).

Feeley, K. J., Davies, S. J., Perez, R., Hubbell, S. P. & Foster, R. B. Directional changes in the species composition of a tropical forest. Ecology92, 871–882 (2011). PubMed

Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Philos. Trans. R. Soc. B368, 20120295 (2013). PubMed PMC

Carreño-Rocabado, G. et al. Effects of disturbance intensity on species and functional diversity in a tropical forest. J. Ecol.100, 1453–1463 (2012).

Bunker, D. E. et al. Species loss and aboveground carbon storage in a tropical forest. Science310, 1029–1031 (2005). PubMed

Yuan, Z. et al. Multiple metrics of diversity have different effects on temperate forest functioning over succession. Oecologia182, 1175–1185 (2016). PubMed

Gourlet-Fleury, S. et al. Environmental filtering of dense-wooded species controls above-ground biomass stored in African moist forests. J. Ecol.99, 981–990 (2011).

Lohbeck, M. et al. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology94, 1211–1216 (2013). PubMed

van der Sande, M. T. et al. A 7000-year history of changing plant trait composition in an Amazonian landscape; the role of humans and climate. Ecol. Lett.22, 925–935 (2019). PubMed PMC

Poorter, L. et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol.185, 481–492 (2010). PubMed

Chaturvedi, R. K., Raghubanshi, A. S., Tomlinson, K. W. & Singh, J. S. Impacts of human disturbance in tropical dry forests increase with soil moisture stress. J. Veg. Sci.28, 997–1007 (2017).

Liang, J. et al. Positive biodiversity–productivity relationship predominant in global forests. Science354, 6309 (2016). PubMed

Brown, S. Estimating Biomass and Biomass Change of Tropical Forests: A Primer (FAO, 1997).

Falster, D. S. et al. BAAD: a biomass and allometry database for woody plants. Ecology96, 1445–1445 (2015).

Vieilledent, G. et al. New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. Am. J. Bot.105, 1653–1661 (2018). PubMed

Zhang, S.-B., Slik, J. W. F., Zhang, J.-L. & Cao, K.-F. Spatial patterns of wood traits in China are controlled by phylogeny and the environment. Glob. Ecol. Biogeogr.20, 241–250 (2011).

Zanne, A. E. et al. Data from: Towards a worldwide wood economics spectrum. Dryad10.5061/dryad.234 (2009). PubMed

Schepaschenko, D. et al. A dataset of forest biomass structure for Eurasia. Sci. Data4, 170070 (2017). PubMed PMC

Kattge, J. et al. TRY plant trait database–enhanced coverage and open access. Glob. Change Biol.26, 119–188 (2020). PubMed

Henry, M. et al. GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. Iforest6, 326–330 (2013).

Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Change Biol.25, 811–826 (2019). PubMed

Giglio, L. MOD14A1 MODIS/Terra thermal anomalies/fire daily L3 global 1 km SIN grid V006. USGS10.5067/MODIS/MOD14A1.061 (2015).

Santoro, M. et al. GlobBiomass—global datasets of forest biomass [dataset]. PANGAEA10.1594/PANGAEA.894711 (2018).

Santoro, M. et al. A detailed portrait of the forest aboveground biomass pool for the year 2010 obtained from multiple remote sensing observations. Geophys. Res. Abstr.20, EGU2018-18932 (2018).

Ma, H. et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol.5, 1110–1122 (2021). PubMed

Pagel, M. Inferring the historical patterns of biological evolution. Nature401, 877–884 (1999). PubMed

Blomberg, S. P., Garland, T. Jr & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution57, 717–745 (2003). PubMed

Li, F. et al. Evolutionary history shapes variation of wood density of tree species across the world. Plant Divers.46, 283–293 (2024). PubMed PMC

Webb, C. O., Ackerly, D. D. & Kembel, S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics24, 2098–2100 (2008). PubMed

Ploton, P. et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun.11, 4540 (2020). PubMed PMC

Batjes, N. H. Harmonized soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma269, 61–68 (2016).

Asner, G. P., Scurlock, J. M. O. & Hicke, J. A. Global synthesis of leaf area index observations: implications for ecological and remote sensing studies. Glob. Ecol. Biogeogr.12, 191–205 (2003).

Kerfriden, B., Bontemps, J.-D. & Leban, J.-M. Variations in temperate forest stem biomass ratio along three environmental gradients are dominated by interspecific differences in wood density. Plant Ecol.222, 289–303 (2021).

Pellegrini, A. F. A. et al. Decadal changes in fire frequencies shift tree communities and functional traits. Nat. Ecol. Evol.5, 504–512 (2021). PubMed

Snorrason, A., Kjartansson, B., Gunnarsson, E. & Eysteinsson, T.H. Global Forest Resources Assessment Update 2005 (FAO, 2005).

Araza, A. et al. A comprehensive framework for assessing the accuracy and uncertainty of global above-ground biomass maps. Remote Sens. Environ.272, 112917 (2022).

Spawn, S. A., Sullivan, C. C., Lark, T. J. & Gibbs, H. K. Harmonized global maps of above and belowground biomass carbon density in the year 2010. Sci. Data7, 112 (2020). PubMed PMC

Ruesch, A. & Gibbs, H. K. New IPCC Tier-1 Global Biomass Carbon Map for the Year 2000. ESS-DIVE10.15485/1463800 (2008).

Baraloto, C. et al. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests. Glob. Change Biol.17, 2677–2688 (2011).

Jenkins, J. C., Chojnacky, D. C., Heath, L. S. & Birdsey, R. A. National-scale biomass estimators for United States tree species. For. Sci.49, 12–35 (2003).

Yang, H. et al. Global patterns of tree wood density. Glob. Change Biol.30, e17224 (2024). PubMed

Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ.34, 137–148 (2011). PubMed

Zheng, J., Zhao, X., Morris, H. & Jansen, S. Phylogeny best explains latitudinal patterns of xylem tissue fractions for woody angiosperm species across China. Front. Plant Sci.10, 556 (2019). PubMed PMC

Ibanez, T. et al. Community variation in wood density along a bioclimatic gradient on a hyper-diverse tropical island. J. Veg. Sci.28, 19–33 (2017).

Enrique, G. et al. A multidimensional functional trait approach reveals the imprint of environmental stress in Mediterranean woody communities. Ecosystems21, 248–262 (2018).

de la Riva, E. G. et al. Disentangling the relative importance of species occurrence, abundance and intraspecific variability in community assembly: a trait-based approach at the whole-plant level in Mediterranean forests. Oikos125, 354–363 (2016).

Serra‐Maluquer, X. et al. Wood density and hydraulic traits influence species’ growth response to drought across biomes. Glob. Change Biol.28, 3871–3882 (2022). PubMed

Muller-Landau, H. C. Interspecific and inter-site variation in wood specific gravity of tropical trees. Biotropica36, 20–32 (2004).

Ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature443, 444–447 (2006). PubMed

LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology89, 371–379 (2008). PubMed

Ziter, C., Bennett, E. M. & Gonzalez, A. Temperate forest fragments maintain aboveground carbon stocks out to the forest edge despite changes in community composition. Oecologia176, 893–902 (2014). PubMed

Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & Hutyra, L. R. Elevated growth and biomass along temperate forest edges. Nat. Commun.12, 7181 (2021). PubMed PMC

Smith, I. A., Hutyra, L. R., Reinmann, A. B., Marrs, J. K. & Thompson, J. R. Piecing together the fragments: elucidating edge effects on forest carbon dynamics. Front. Ecol. Environ.16, 213–221 (2018).

Zanne, A. E. et al. Angiosperm wood structure: global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot.97, 207–215 (2010). PubMed

Muñoz, G. R., Encinas, J. I. & de Paula, J. E. Wood density as an auxiliary classification criterion for botanical identification of 241 tree species in the order Sapindales. Eur. J. Res.138, 583–594 (2019).

Slik, J. W. F. Estimating species-specific wood density from the genus average in Indonesian trees. J. Trop. Ecol.22, 481–482 (2006).

Boyle, B. L. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics14, 16 (2013). PubMed PMC

Jin, Y. & Qian, H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography42, 1353–1359 (2019). PubMed PMC

Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol.3, 217–223 (2012).

Ooms, J. & Chamberlain, S. phylocomr: Interface to ‘Phylocom’. R package version 0.3.4 (2019).

Panchen, Z. A. et al. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytol.203, 1208–1219 (2014). PubMed

Poorter, L. et al. Biomass resilience of neotropical secondary forests. Nature530, 211 (2016). PubMed

Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience51, 933–938 (2001).

Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data4, 170122 (2017). PubMed PMC

Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data5, 180040 (2018). PubMed PMC

Wilson, A. M. & Jetz, W. Remotely sensed high-resolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PLoS Biol.14, e1002415 (2016). PubMed PMC

Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science339, 940–943 (2013). PubMed

Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol.37, 4302–4315 (2017).

Shangguan, W., Hengl, T., de Jesus, J. M., Yuan, H. & Dai, Y. Mapping the global depth to bedrock for land surface modeling. J. Adv. Model Earth Syst.9, 65–88 (2017).

Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc.85, 381–394 (2004).

Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc.146, 1999–2049 (2020).

Gelaro, R. et al. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim.30, 5419–5454 (2017). PubMed PMC

Didan, K., Munoz, A. B., Solano, R. & Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series) (Univ. of Arizona, 2015).

Myneni, R., Knyazikhin, Y. & Park, T. MOD15A2H MODIS/terra leaf area index/FPAR 8-day L4 global 500 m SIN grid V006. USGS10.5067/MODIS/MYD15A2H.006 (2015).

Zhao, M., Running, S., Heinsch, F. A. & Nemani, R. in Land Remote Sensing and Global Environmental Change (eds Ramachandran, B. et al.) 635–660 (Springer, 2010).

Trabucco, A. & Zomer, R. J. Global Soil Water Balance Geospatial Database (CGIAR-CSI, 2010).

Zomer, R. J., Trabucco, A., Bossio, D. A. & Verchot, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ.126, 67–80 (2008).

Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science342, 850–853 (2013). PubMed

Crowther, T. W. et al. Mapping tree density at a global scale. Nature525, 201–205 (2015). PubMed

Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 10.1029/2011JG001708 (2011).

Besnard, S. et al. Mapping global forest age from forest inventories, biomass and climate data. Earth Syst. Sci. Data13, 4881–4896 (2021).

Tuanmu, M.-N. & Jetz, W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr.23, 1031–1045 (2014).

Klein Goldewijk, K., Beusen, A. & Janssen, P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene20, 565–573 (2010).

Klein Goldewijk, K., Beusen, A., Van Drecht, G. & De Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Glob. Ecol. Biogeogr.20, 73–86 (2011).

Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

Van Den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature572, 194–198 (2019). PubMed

LeDell, E. et al. h2o: R interface for the ‘H2O’ scalable machine learning platform. R package version 3.44.0 (2020).

Li, J. Assessing the accuracy of predictive models for numerical data: not r nor r2, why not? Then what? PLoS ONE12, e0183250 (2017). PubMed PMC

Sagi, O. & Rokach, L. Ensemble learning: a survey. WIREs Data Min. Knowl. Discov.8, e1249 (2018).

Phillips, O. L. et al. Species matter: wood density influences tropical forest biomass at multiple scales. Surv. Geophys. 40, 913–935 (2019). PubMed PMC

Heiberger, R. M. & Holland, B. Statistical Analysis and Data Display: An Intermediate Course with Examples in R (Springer, 2019).

Hothorn, T. & Zeileis, A. partykit: a modular toolkit for recursive partytioning in R. J. Mach. Learn. Res.16, 3905–3909 (2015).

Borkovec, M. & Madin, N. ggparty: ‘ggplot’ visualizations for the ‘partykit’ package. R package version 1.0.0 (2019).

Braatz, S. M. State of the World’s Forests, 1997 (FAO, 1997).

Mo, L. The global distribution and drivers of wood density across angiosperms and gymnosperms and their impact on forest carbon stocks (Version Ver01). Zenodo10.5281/zenodo.13331493 (2024). PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The global distribution and drivers of wood density and their impact on forest carbon stocks

. 2024 Dec ; 8 (12) : 2195-2212. [epub] 20241015

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...