The oldest known clones of Salix herbacea growing in the Northern Apennines, Italy are at least 2000 years old
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
37755870
DOI
10.1002/ajb2.16243
Knihovny.cz E-resources
- Keywords
- bud scars, clonal growth, dwarf shrub, genet size, growth rings, population persistence, relict population, snowbed willow, stem longitudinal growth,
- MeSH
- Ecosystem MeSH
- Plants MeSH
- Salix * MeSH
- Viverridae MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Italy MeSH
PREMISE: Dominant in many ecosystems around the world, clonal plants can reach considerable ages and sizes. Due to their modular growth patterns, individual clonal plants (genets) can consist of many subunits (ramets). Since single ramets do not reflect the actual age of genets, the ratio between genet size (radius) and longitudinal annual growth rate (LAGR) of living ramets is often used to approximate the age of clonal plants. However, information on how the LAGR changes along ramets and how LAGR variability may affect age estimates of genets is still limited. METHODS: We assessed the variability of LAGR based on wood-section position along the ramets and on the duration of the growing season on three genetically distinct genets of Salix herbacea growing in the Northern Apennines (Italy). We compared genet ages estimated by dividing genet radius by the LAGRs of its ramets. RESULTS: LAGR increased significantly from the stem apex to the root collar; indicating that ramet growth rate decreased with time. Furthermore, a difference of ca. 2 weeks in the onset of the growing period did not impact LAGR. Considering the high LAGR variability, we estimated that the three genets started to grow between ~2100 and ~7000 years ago, which makes them the oldest known clones of S. herbacea even considering the most conservative age estimate. CONCLUSIONS: Our findings indicate that analyzing ramets at the root collar provides an integrative measurement of their overall LAGR, which is crucial for estimating the age of genets.
Department of Agricultural and Forest Sciences and Engineering University of Lleida Lleida Spain
Department of Geography Masaryk University Brno Czech Republic
Department of Geography University of Cambridge Cambridge UK
Global Change Research Centre Brno Czech Republic
Institute of Biosciences and BioResources Firenze Italy
Joint Research Unit CTFC AGROTECNIO CERCA Solsona Spain
Lancaster University Lancaster Environment Centre Lancaster UK
Swiss Federal Research Institute WSL Birmensdorf Switzerland
See more in PubMed
Abeli, T., J. C. Vamosi, and S. Orsenigo. 2018. The importance of marginal population hotspots of cold-adapted species for research on climate change and conservation. Journal of Biogeography 45: 977-985.
Ally, D., K. Ritland, and S. P. Otto. 2008. Can clone size serve as a proxy for clone age? An exploration using microsatellite divergence in Populus tremuloides. Molecular Ecology 17: 4897-4911.
Arnaud-Haond, S., C. M. Duarte, F. Alberto, and E. A. Serrao. 2007. Standardizing methods to address clonality in population studies. Molecular Ecology 16: 5115-5139.
Baroni, C., G. Guidobaldi, M. C. Salvatore, M. Christl, and S. Ivy-Ochs. 2018. Last glacial maximum glaciers in the Northern Apennines reflect primarily the influence of southerly storm-tracks in the western Mediterranean. Quaternary Science Reviews 197: 352-367.
Buizer, B., S. Weijers, P. M. van Bodegom, I. G. Alsos, P. B. Eidesen, J. van Breda, M. de Korte, et al. 2012. Range shifts and global warming: ecological responses of Empetrum nigrum L. to experimental warming at its northern (high Arctic) and southern (Atlantic) geographical range margin. Environmental Research Letters 7: 025501.
Callaghan, T. V., A. Carlson, and N. J. C. Tyler. 1989. Historical records of climate-related growth in Cassiope tetragona from the Arctic. British Ecological Society 77: 823-837.
Carbognani, M., A. Piotti, S. Leonardi, L. Pasini, I. Spanu, G. G. Vendramin, M. Tomaselli, and A. Petraglia. 2019. Reproductive and genetic consequences of extreme isolation in Salix herbacea L. at the rear edge of its distribution. Annals of Botany 124: 849-860.
Carton, A., and M. Panizza. 1988. Il paesaggio fisico dell'alto Appennino emiliano. Grafis Edizioni, Bologna, Italy.
Clarke, E. 2012. Plant individuality: a solution to the demographer's dilemma. Biology and Philosophy 27: 321-361.
Cristóbal, D., P. Martínez-Zurimendi, I. Villamediana, J. Ciriza, J. Villar, N. Nanos, and R. Sierra-de-Grado. 2014. Clonal structure and dynamics of peripheral Populus tremula L. populations. iForest - Biogeosciences and Forestry 7: 140-149.
de Kroon, H., and J. van Groenendael. 1997. The ecology and evolution of clonal plants. Backhuys, Leiden, Netherlands.
de Witte, L. C., G. F. J. Armbruster, L. Gielly, P. Taberlet, and J. Stöcklin. 2012. AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Molecular Ecology 21: 1081-1097.
de Witte, L. C., and J. Stöcklin. 2010. Longevity of clonal plants: why it matters and how to measure it. Annals of Botany 106: 859-870.
de Witte, L. C., and J. Stöcklin. 2012. Horizontal growth in arctic-alpine clonal plants is not affected by climatic variability among regions. Plant Ecology and Diversity 4: 329-340.
Eames, A. J., and L. H. MacDaniels. 1947. An introduction to plant anatomy, 2nd ed. McGraw-Hill, NY, NY, USA.
Evert, R. F. 2006. Esau's plant anatomy: meristems, cells, and tissues of the plant body: their structure, function, and development, 3rd ed. John Wiley, Hoboken, NJ, USA.
Ferrari, C., and G. Rossi. 1995. Relationships between plant communities and late snow melting on Mount Prado (Northern Apennines, Italy). Plant Ecology 120: 49-58.
Ferrarini, E. 1969. Nuovi relitti glaciali sulle Alpi Apuane e sull'Appennino vicino (Linaria alpina Mill., Salix herbacea L.). Webbia 24: 411-417.
Ferrarini, E. 1974. Altre cenosi e stazioni relitte reperite sull'Appennino settentrionale (ad Antennaria carpatica, a Rhododendron ferrugineum, a Salix herbacea, a Saussurea discolor). Webbia 29: 105-112.
Harper, J. 1977. Population biology of plants. Academic Press, London, UK.
Hothorn, T., F. Bretz, and P. Westfall. 2008. Simultaneous inference in general parametric models. In Biometrical Journal 50: 346-363.
Hutchings, M. J., and D. K. Wijesinghe. 1997. Patchy habitats, division of labour and growth dividends in clonal plants. Trends in Ecology and Evolution 12: 390-394.
Johnstone, J. F., and G. H. R. Henry. 1997. Retrospective analysis of growth and reproduction in Cassiope tetragona and relations to climate in the Canadian High Arctic. Arctic and Alpine Research 29: 459-469.
Jónsdóttir, I. S., M. Augner, T. Fagerström, H. Persson, and A. Stenström. 2000. Genet age in marginal populations of two clonal Carex species in the Siberian Arctic. Ecography 23: 402-412.
Kolishchuk, V. G. 1990. Dendroclimatological study of prostrate woody plants. In E. Cook and L. Kairiukstis [eds.], Methods of dendrochronology: applications in the environmental sciences, 51-55. Kluwer, Dordrecht, Netherlands.
Lenth, R. 2023. emmeans: Estimated marginal means, aka least-squares means. R package version 1.8.6. Website: https://cran.r-project.org/package=emmeans
Little, C. J., J. A. Wheeler, J. Sedlacek, A. J. Cortés, and C. Rixen. 2016. Small-scale drivers: the importance of nutrient availability and snowmelt timing on performance of the alpine shrub Salix herbacea. Oecologia 180: 1015-1024.
Losacco, V. 1982. Gli antichi ghiacciai dell'Appennino settentrionale. Studio morfologico e paleogeografico. Atti della Societá dei Naturalistie Matematici diModena 113: 1-224.
Macaya-Sanz, D., M. Heuertz, D. Lindtke, G. G. Vendramin, C. Lexer, and S. C. González-Martínez. 2016. Causes and consequences of large clonal assemblies in a poplar hybrid zone. Molecular Ecology 25: 5330-5344.
Myers-Smith, I. H., M. Hallinger, D. Blok, U. Sass-Klaassen, S. A. Rayback, S. Weijers, A. J. Trant, et al. 2015. Methods for measuring arctic and alpine shrub growth: a review. Earth-Science Reviews 140: 1-13.
Palmer, W. H., and A. K. Miller. 1961. Botanical evidence for the recession of a glacier. Oikos 12: 75-86.
Petraglia, A., and M. Tomaselli. 2007. Phytosociological study of the snowbed vegetation in the Northern Apennines (Northern Italy). Phytocoenologia 37: 67-98.
Pinheiro, J., D. Bates, and R Core Team. 2023. nlme: Linear and nonlinear mixed effects models. R package version 3.1-162, Website: https://cran.r-project.org/package=nlme
R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Website: https://www.R-project.org/
Rayback, S. A., L. Andrea, and G. R. Henry. 2011. Spatial variability of the dominant climate signal in Cassiope tetragona from sites in arctic canada. Arctic 64: 98-114.
Rayback, S. A., and G. H. R. Henry. 2006. Reconstruction of summer temperature for a Canadian High Arctic site from retrospective analysis of the dwarf shrub, Cassiope tetragona. Arctic, Antarctic, and Alpine Research 38: 228-238.
Rayback, S. A., A. Lini, and D. L. Berg. 2012. The dendroclimatological potential of an alpine shrub, Cassiope mertensiana, from Mount Rainier, WA, USA. Geografiska Annaler, series A: Physical Geography 94: 413-427.
Reisch, C., S. Schurm, and P. Poschlod. 2007. Spatial genetic structure and clonal diversity in an alpine population of Salix herbacea (Salicaceae). Annals of Botany 99: 647-651.
Reusch, T. B. H., W. T. Stam, and J. L. Olsen. 1999. Size and estimated age of genets in eelgrass, Zostera marina, assessed with microsatellite markers. Marine Biology 133: 519-525.
Schweingruber, F. H., and P. Poschlod. 2005. Forest snow and landscape research. growth rings in herbs and shrubs: life span, age determination and stem anatomy. Forest Snow and Landscape Research 79: 195-415.
Stamati, K., P. M. Hollingsworth, and J. Russell. 2007 Patterns of clonal diversity in three species of sub-arctic willow (Salix lanata, Salix lapponum and Salix herbacea). Plant Systematics and Evolution 269: 75-88.
Steinger, T., C. Körner, and B. Schmid. 1996. Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105: 94-99.
Suvanto, L. I., and T. B. Latva-Karjanmaa. 2005. Clone identification and clonal structure of the European aspen (Populus tremula). Molecular Ecology 14: 2851-2860.
Thomas, H. 2013. Senescence, ageing and death of the whole plant. New Phytologist 197: 696-711.
Vallejo-Marín, M., M. E. Dorken, and S. C. H. Barrett. 2010. The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution, and Systematics 41: 193-213.
Vasek, F. C. 1980. Creosote bush: long-lived clones in the Mojave Desert. American Journal of Botany 67: 246-255.
Weijers, S., I. Greve Alsos, P. Bronken Eidesen, R. Broekman, M. J. J. E. Loonen, and J. Rozema. 2012. No divergence in Cassiope tetragona: persistence of growth response along a latitudinal temperature gradient and under multi-year experimental warming. Annals of Botany 110: 653-665.
Weijers, S., F. Wagner-Cremer, U. Sass-Klaassen, R. Broekman, and J. Rozema. 2013. Reconstructing High Arctic growing season intensity from shoot length growth of a dwarf shrub. Holocene 23: 721-731.
Wheeler, J. A., A. J. Cortés, J. Sedlacek, S. Karrenberg, M. van Kleunen, S. Wipf, G. Hoch, et al. 2016. The snow and the willows: earlier spring snowmelt reduces performance in the low-lying alpine shrub Salix herbacea. Journal of Ecology 104: 1041-1050.
Wijk, S. 1986a. Influence of climate and age on annual shoot increment in Salix herbacea. Journal of Ecology 74: 685-692.
Wijk, S. 1986b. Performance of Salix herbacea in an alpine snow-bed gradient. Journal of Ecology 74: 675-684.