BACKGROUND AND AIMS: Both regional and local plant abundances are driven by species' dispersal capacities and their abilities to exploit new habitats and persist there. These processes are affected by clonal growth, which is difficult to evaluate and compare across large numbers of species. This study assessed the influence of clonal reproduction on local and regional abundances of a large set of species and compared the predictive power of morphologically defined traits of clonal growth with data on actual clonal growth from a botanical garden. The role of clonal growth was compared with the effects of seed reproduction, habitat requirements and growth, proxied both by LHS (leaf-height-seed) traits and by actual performance in the botanical garden. METHODS: Morphological parameters of clonal growth, actual clonal reproduction in the garden and LHS traits (leaf-specific area - height - seed mass) were used as predictors of species abundance, both regional (number of species records in the Czech Republic) and local (mean species cover in vegetation records) for 836 perennial herbaceous species. Species differences in habitat requirements were accounted for by classifying the dataset by habitat type and also by using Ellenberg indicator values as covariates. KEY RESULTS: After habitat differences were accounted for, clonal growth parameters explained an important part of variation in species abundance, both at regional and at local levels. At both levels, both greater vegetative growth in cultivation and greater lateral expansion trait values were correlated with higher abundance. Seed reproduction had weaker effects, being positive at the regional level and negative at the local level. CONCLUSIONS: Morphologically defined traits are predictive of species abundance, and it is concluded that simultaneous investigation of several such traits can help develop hypotheses on specific processes (e.g. avoidance of self-competition, support of offspring) potentially underlying clonal growth effects on abundance. Garden performance parameters provide a practical approach to assessing the roles of clonal growth morphological traits (and LHS traits) for large sets of species.
- MeSH
- Biodiversity * MeSH
- Models, Biological MeSH
- Clone Cells MeSH
- Species Specificity MeSH
- Reproduction, Asexual * MeSH
- Plant Development * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Clonal growth of plants is attained by a number of morphologically different organs (e.g. stolons, rhizomes, and roots), which are not functionally equivalent. Consequently, these clonal growth organ (CGO) types can determine functional traits that are associated with clonality, although little is known about their evolutionary flexibility or the constraining role they play on clonal traits. We investigated the rates of evolutionary change by which individual CGOs are acquired and lost using a set of 2652 species of Central European flora. Furthermore, we asked how these individual CGOs constrain functionally relevant clonal traits, such as lateral spread, number of offspring, and persistence of connections. We show that plants can easily switch in evolution among individual types of CGO and between clonal and nonclonal habits. However, not all these transitions are equally probable. Namely, stem-based clonal growth and root-based clonal growth constitute evolutionarily separate forms of clonal growth. Clonal traits are strongly constrained by individual CGO types. Specifically, fast lateral spread is attained by stolons or hypogeogenous rhizomes, and persistent connections are attained by all rhizome types. However, the ease with which clonal organs appear and disappear in evolution implies that plants can overcome these constraints by adjusting their morphologies.
Germline SAMD9 and SAMD9L mutations (SAMD9/9Lmut) predispose to myelodysplastic syndromes (MDS) with propensity for somatic rescue. In this study, we investigated a clinically annotated pediatric MDS cohort (n = 669) to define the prevalence, genetic landscape, phenotype, therapy outcome and clonal architecture of SAMD9/9L syndromes. In consecutively diagnosed MDS, germline SAMD9/9Lmut accounted for 8% and were mutually exclusive with GATA2 mutations present in 7% of the cohort. Among SAMD9/9Lmut cases, refractory cytopenia was the most prevalent MDS subtype (90%); acquired monosomy 7 was present in 38%; constitutional abnormalities were noted in 57%; and immune dysfunction was present in 28%. The clinical outcome was independent of germline mutations. In total, 67 patients had 58 distinct germline SAMD9/9Lmut clustering to protein middle regions. Despite inconclusive in silico prediction, 94% of SAMD9/9Lmut suppressed HEK293 cell growth, and mutations expressed in CD34+ cells induced overt cell death. Furthermore, we found that 61% of SAMD9/9Lmut patients underwent somatic genetic rescue (SGR) resulting in clonal hematopoiesis, of which 95% was maladaptive (monosomy 7 ± cancer mutations), and 51% had adaptive nature (revertant UPD7q, somatic SAMD9/9Lmut). Finally, bone marrow single-cell DNA sequencing revealed multiple competing SGR events in individual patients. Our findings demonstrate that SGR is common in SAMD9/9Lmut MDS and exemplify the exceptional plasticity of hematopoiesis in children.
- MeSH
- Single-Cell Analysis MeSH
- Bone Marrow Cells metabolism MeSH
- Child MeSH
- HEK293 Cells MeSH
- Intracellular Signaling Peptides and Proteins genetics MeSH
- Kaplan-Meier Estimate MeSH
- Clonal Evolution genetics MeSH
- Clonal Hematopoiesis genetics MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Myelodysplastic Syndromes genetics pathology MeSH
- Tumor Suppressor Proteins genetics MeSH
- Child, Preschool MeSH
- GATA2 Transcription Factor genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Germ-Line Mutation genetics MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Clonal plants have more traits enabling individual persistence (larger belowground storage of buds and assimilates), whereas non-clonal plants have more traits enabling population persistence (a higher reliance on regeneration from seeds). This difference presumably makes those groups respond differently to disturbance. We asked whether this difference is already expressed in the first year of the plant's life. In a pot experiment with 17 congeneric pairs of clonal and non-clonal herbs, we investigated response to a disturbance at the individual level. We were interested whether the leaf C/N ratio (a proxy reflecting active growth and photosynthetic efficiency), the R/S ratio (a proxy for belowground storage) and the amount of compensated biomass differ between clonal and non-clonal herbs. Moreover, we asked whether compensation for the loss of aboveground biomass after disturbance can be predicted by the R/S ratio or explained by the leaf C/N ratio. We found that clonal herbs have higher leaf C/N and R/S ratios than non-clonal herbs. Under disturbance, the leaf C/N and R/S ratios decreased in the clonal herbs and increased in the non-clonal herbs. However, the clonal and non-clonal plants did not differ in biomass compensation ability. Neither the R/S ratio nor the leaf C/N ratio explained the compensation abilities of the herbs. These results show that even though the growth strategies of clonal and non-clonal plants and their reactions to disturbance are different, the groups are similarly capable of compensating for the loss of aboveground biomass. Clonal plants do not have an advantage over non-clonal plants under disturbance during their first year of life.
- MeSH
- Biomass MeSH
- Photosynthesis MeSH
- Plant Leaves * MeSH
- Plants * MeSH
- Publication type
- Journal Article MeSH
Cartilaginous structures are at the core of embryo growth and shaping before the bone forms. Here we report a novel principle of vertebrate cartilage growth that is based on introducing transversally-oriented clones into pre-existing cartilage. This mechanism of growth uncouples the lateral expansion of curved cartilaginous sheets from the control of cartilage thickness, a process which might be the evolutionary mechanism underlying adaptations of facial shape. In rod-shaped cartilage structures (Meckel, ribs and skeletal elements in developing limbs), the transverse integration of clonal columns determines the well-defined diameter and resulting rod-like morphology. We were able to alter cartilage shape by experimentally manipulating clonal geometries. Using in silico modeling, we discovered that anisotropic proliferation might explain cartilage bending and groove formation at the macro-scale.
- MeSH
- Models, Biological MeSH
- Cartilage embryology MeSH
- Mice MeSH
- Vertebrates embryology MeSH
- Computer Simulation MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Plant communities often exhibit high diversity, even though pairwise experiments usually result in competitive hierarchies that should result in competitive exclusion. Such experiments, however, do not typically allow expression of spatial traits, despite theoretical studies showing the potential importance of spatial mechanisms of diversity maintenance. Here we ask whether, in a clonal plant model system, spatial trait variation is more likely than growth trait variation to maintain diversity. We used a field-calibrated, spatially explicit model to simulate communities comprising sets of four simulated species differing in only one of a suite of architectural or growth traits at a time, examining their dynamics and long-term diversity. To compare trait manipulation effects across traits measured in different units, we scaled traits to have identical effects on initial productivity. We found that in communities of species differing only in an architectural trait, all species usually persist, whereas communities of species differing only in a growth trait experienced rapid competitive exclusion. To examine the roles of equalizing and stabilizing mechanisms in maintaining diversity, we conducted reciprocal invasion experiments for species pairs differing only in single traits. The results suggest that stabilizing mechanisms cannot account for the observed long-term co-occurrence. Strong positive correlations between diversity and similarity both in monoculture carrying capacity and reciprocal invasion ability suggesting equalizing mechanisms may instead be responsible.
- MeSH
- Biodiversity * MeSH
- Models, Biological MeSH
- Carex Plant genetics growth & development physiology MeSH
- Plant Dispersal MeSH
- Species Specificity MeSH
- Phenotype * MeSH
- Reproduction, Asexual MeSH
- Computer Simulation MeSH
- Population Dynamics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Multiple myeloma (MM) is composed of an array of multiple clones, each potentially associated with different clinical behavior. Previous studies focused on clinical implication of centrosome amplification (CA) in MM show contradictory results. It seems that the role of CA as well as CA formation in MM differ from other malignancies. This has brought about a question about the role of CA positive clone which is--is it going to be a more aggressive clone evolutionally arising under pressure of negative conditions or can CA serve as a marker of cell abnormality and lead to cell death and further elimination of this damaged subpopulation? This current review is devoted to the discussion of the existence of MM subclones with centrosome amplification (CA), its evolutionary behaviour within intraclonal heterogeneity as well as its potential impact on the disease progression and MM treatment.
- MeSH
- Apoptosis physiology MeSH
- Clone Cells MeSH
- Centrosome pathology MeSH
- Stress, Physiological physiology MeSH
- Carcinogenesis pathology MeSH
- Clonal Evolution physiology MeSH
- Humans MeSH
- Multiple Myeloma genetics pathology MeSH
- Disease Progression MeSH
- Cell Proliferation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
A new clonal cell line, EM-G3, was derived from a primary lesion of human infiltrating ductal breast carcinoma. The line consisted of cuboidal cells with occasional appearance of more differentiated branched cells apparently involved in cell-to-cell communication. The EM-G3 cells, population doubling time 34 h, are dependent on the epidermal growth factor. Multicolor fluorescence in situ hybridization (mFISH) analysis demonstrated a stable diploid genome with several genetic changes. Immunocytochemical analysis of EM-G3 in vitro revealed positivity for keratins (K) K5, K14, K18, nuclear protein p63, epithelial membrane antigen (EMA) and other proteins indicative of a pattern of mammary epithelium bipotent progenitors. Detection of integrins alpha-6, beta-1, and protein CD44 by cDNA array also pointed to the character of basal/stem cells. In contrast, dominant cells in the human original tumor showed the luminal character (K18+, K19+, K5-, K14-, and p63-). However, cells with the immunocytochemical profile similar to that of cultured EM-G3 cells were found in minor clusters in the patient's tumor sections. The EM-G3 cells formed limited tumors in nu/nu mice. The cells in mouse tumors were organized in primitive ductal-like structures consisting of 1-3 large central luminal-like cells (EMA+) surrounded by peripheral myoepithelial-like cells (p63+/EMA-). The large central cells gradually disintegrated, forming a pseudolumen. Apparently, EM-G3 cells are able to partially differentiate in vivo as well as in vitro. Our results indicate that EM-G3 cells were derived from a premalignant population of common progenitors of luminal and myoepithelial cells that were immortalized in an early stage of tumorigenesis.
- MeSH
- Cell Differentiation MeSH
- Financing, Organized MeSH
- In Situ Hybridization, Fluorescence MeSH
- Immunohistochemistry MeSH
- Karyotyping MeSH
- Humans MeSH
- Mutation MeSH
- Mice, Nude MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Neoplastic Stem Cells pathology MeSH
- Breast Neoplasms genetics pathology MeSH
- Oligonucleotide Array Sequence Analysis MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- MeSH
- Altitude * MeSH
- Cold Climate * MeSH
- Habits MeSH
- Publication type
- Journal Article MeSH
- Comment MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Histocytochemistry MeSH
- Humans MeSH
- Macroglobulins MeSH
- Melanoma MeSH
- In Vitro Techniques MeSH
- Check Tag
- Humans MeSH