The Root-Associated Microbial Community of the World's Highest Growing Vascular Plants

. 2016 Aug ; 72 (2) : 394-406. [epub] 20160531

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27245598
Odkazy

PubMed 27245598
PubMed Central PMC4937074
DOI 10.1007/s00248-016-0779-8
PII: 10.1007/s00248-016-0779-8
Knihovny.cz E-zdroje

Upward migration of plants to barren subnival areas is occurring worldwide due to raising ambient temperatures and glacial recession. In summer 2012, the presence of six vascular plants, growing in a single patch, was recorded at an unprecedented elevation of 6150 m.a.s.l. close to the summit of Mount Shukule II in the Western Himalayas (Ladakh, India). Whilst showing multiple signs of stress, all plants have managed to establish stable growth and persist for several years. To learn about the role of microbes in the process of plant upward migration, we analysed the root-associated microbial community of the plants (three individuals from each) using microscopy and tagged amplicon sequencing. No mycorrhizae were found on the roots, implying they are of little importance to the establishment and early growth of the plants. However, all roots were associated with a complex bacterial community, with richness and diversity estimates similar or even higher than the surrounding bare soil. Both soil and root-associated communities were dominated by members of the orders Sphingomonadales and Sphingobacteriales, which are typical for hot desert soils, but were different from communities of temperate subnival soils and typical rhizosphere communities. Despite taxonomic similarity on the order level, the plants harboured a unique set of highly dominant operational taxonomic units which were not found in the bare soil. These bacteria have been likely transported with the dispersing seeds and became part of the root-associated community following germination. The results indicate that developing soils act not only as a source of inoculation to plant roots but also possibly as a sink for plant-associated bacteria.

Zobrazit více v PubMed

Chen I-C, Hill JK, Ohlemüller R, et al. Rapid range shifts of species associated with high levels of climate warming. Science. 2011;333:1024–1026. doi: 10.1126/science.1206432. PubMed DOI

Chapin FS, Walker LR, Fastie CL, Sharman LC. Mechanisms of primary succession following deglaciation at Glacier Bay, Alaska. Ecol Monogr. 1994;64:149–175. doi: 10.2307/2937039. DOI

Holzinger B, Hülber K, Camenisch M, Grabherr G. Changes in plant species richness over the last century in the eastern Swiss Alps: elevational gradient, bedrock effects and migration rates. Plant Ecol. 2007;195:179–196. doi: 10.1007/s11258-007-9314-9. DOI

Dolezal J, Homma K, Takahashi K, et al. Primary succession following deglaciation at Koryto Glacier Valley, Kamchatka. Arct Antarct Alp Res. 2008;40:309–322. doi: 10.1657/1523-0430(06-123)[DOLEZAL]2.0.CO;2. DOI

Matthews JA. The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands. Cambridge: Cambridge University Press; 1992.

Schütte UME, Abdo Z, Bent SJ, et al. Bacterial succession in a glacier foreland of the High Arctic. ISME J. 2009;3:1258–1268. doi: 10.1038/ismej.2009.71. PubMed DOI PMC

Zumsteg A, Luster J, Göransson H, et al. Bacterial, archaeal and fungal succession in the forefield of a receding glacier. Microb Ecol. 2012;63:552–564. doi: 10.1007/s00248-011-9991-8. PubMed DOI

Nemergut DR, Anderson SP, Cleveland CC, et al. Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol. 2007;53:110–122. doi: 10.1007/s00248-006-9144-7. PubMed DOI

Nicol GW, Tscherko D, Embley TM, Prosser JI. Primary succession of soil Crenarchaeota across a receding glacier foreland. Environ Microbiol. 2005;7:337–347. doi: 10.1111/j.1462-2920.2005.00698.x. PubMed DOI

Aschenbach K, Conrad R, Řeháková K, et al. Methanogens at the top of the world: occurrence and potential activity of methanogens in newly deglaciated soils in high-altitude cold deserts in the Western Himalayas. Front Microbiol. 2013;4:359. doi: 10.3389/fmicb.2013.00359. PubMed DOI PMC

Türk R, Gärtner G. Biological soil crusts of the subalpine, alpine, and nival areas in the Alps. In: Belnap J, Lange OL, editors. Biological soil crusts: structure, function and management. Berlin: Springer-Verlag; 2003. pp. 3–30.

Sattin SR, Cleveland CC, Hood E, et al. Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol. 2010;47:673–681. doi: 10.1007/s12275-009-0194-7. PubMed DOI

Schmidt SK, Reed SC, Nemergut DR, et al. The earliest stages of ecosystem succession in high-elevation (5000 metres above sea level), recently deglaciated soils. Proc R Soc B. 2008;275:2793–2802. doi: 10.1098/rspb.2008.0808. PubMed DOI PMC

de Richter DB, Oh N-H, Fimmen R, Jackson J. The rhizosphere and soil formation. In: Cardon ZG, Whitbeck JL, editors. The rhizosphere: an ecological perspective. Burlington: Elsevier Academic; 2007. pp. 179–200.

Klimeš L, Doležal J. An experimental assessment of the upper elevational limit of flowering plants in the Western Himalayas. Ecography. 2010;33:590–596.

Körner C. Coldest places on earth with angiosperm plant life. Alp Bot. 2011;121:11–22. doi: 10.1007/s00035-011-0089-1. DOI

Dvorský M, Altman J, Kopecký M, et al. Vascular plants at extreme elevations in eastern Ladakh, northwest Himalayas. Plant Ecol Divers. 2015;8:571–584. doi: 10.1080/17550874.2015.1018980. DOI

Manoharachary C, Mukerji KG (2006) Rhizosphere biology—an overview. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Heidelberg, pp 1–16

Singh G, Mukerji KG (2006) Root exudates as determinant of rhizospheric microbial biodiversity. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere. Springer, Heidelberg, pp 39–54

Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–799. doi: 10.1038/nrmicro3109. PubMed DOI

Hawkes CV, DeAngelis KM, Firestone MK. Root interactions with soil microbial communities and processes. In: Cardon ZG, Whitbeck JL, editors. The rhizosphere: an ecological perspective. Burlington: Elsevier Academic; 2007. pp. 179–200.

Dvorský M, Doležal J, de Bello F, Klimešová JK. Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Appl Veg Sci. 2011;14:132–147. doi: 10.1111/j.1654-109X.2010.01103.x. DOI

Bolch T, Kulkarni A, Kääb A, et al. The state and fate of Himalayan glaciers. Science. 2012;336:310–314. doi: 10.1126/science.1215828. PubMed DOI

Bhutiyani MR, Kale VS, Pawar NJ. Long-term trends in maximum, minimum and mean annual air temperatures across the northwestern Himalaya during the twentieth century. Clim Chang. 2007;85:159–177. doi: 10.1007/s10584-006-9196-1. DOI

Shrestha UB, Gautam S, Bawa KS. Widespread climate change in the Himalayas and associated changes in local ecosystems. PLoS ONE. 2012;7:e36741. doi: 10.1371/journal.pone.0036741. PubMed DOI PMC

Klimešová J, Doležal J, Dvorský M, et al. Clonal growth forms in eastern Ladakh, Western Himalayas: classification and habitat preferences. Folia Geobot. 2011;46:191–217. doi: 10.1007/s12224-010-9076-3. DOI

Vlček V (2010) Calibration of the water content sensor TMS for mineral and organic soils. BSc thesis, České vysoké učení technické

Farquhar G, O’Leary M, Berry J. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Funct Plant Biol. 1982;9:121–137.

Chlumská Z, Janeček Š, Doležal J. How to preserve plant samples for carbohydrate analysis? Test of suitable methods applicable in remote areas. Folia Geobot. 2013;49:1–15. doi: 10.1007/s12224-013-9153-5. DOI

Schweingruber F, Poschlod P. Growth rings in herbs and shrubs: life span, age determination and stem anatomy. For Snow Landsc Res. 2005;79:195–415.

Wheeler EA, Baas P, Gasson PE. IAWA list of microscopic features for hardwood ident ification: with an appendix on non-anatomical information. IAWA Bull. 1989;10:219–332. doi: 10.1163/22941932-90000496. DOI

Schweingruber FH, Börner A, Schulze E-D (2011) Atlas of stem anatomy in herbs, shrubs and trees: volume 1. Springer Science & Business Media, Dordrecht

Giovannetti M, Mosse B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 1980;84:489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x. DOI

Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. ISME J. 2012;6:847–862. doi: 10.1038/ismej.2011.141. PubMed DOI PMC

Angel R. Total nucleic acid extraction from soil. Protoc Exch. 2012

Kozich JJ, Westcott SL, Baxter NT, et al. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13. PubMed DOI PMC

Köhler T, Dietrich C, Scheffrahn RH, Brune A. High-resolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.) Appl Environ Microbiol. 2012;78:4691–4701. doi: 10.1128/AEM.00683-12. PubMed DOI PMC

Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:75377541. doi: 10.1128/AEM.01541-09. PubMed DOI PMC

Pruesse E, Peplies J, Glöckner FO. SINA: accurate high throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–1829. doi: 10.1093/bioinformatics/bts252. PubMed DOI PMC

Pruesse E, Quast C, Knittel K, et al. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007;35:7188–7196. doi: 10.1093/nar/gkm864. PubMed DOI PMC

Edgar RC, Haas BJ, Clemente JC, et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–2200. doi: 10.1093/bioinformatics/btr381. PubMed DOI PMC

Huse SM, Welch DM, Morrison HG, Sogin ML. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol. 2010;12:1889–1898. doi: 10.1111/j.1462-2920.2010.02193.x. PubMed DOI PMC

Schloss PD, Westcott SL. Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl Environ Microbiol. 2011;77:3219–3226. doi: 10.1128/AEM.02810-10. PubMed DOI PMC

Bunge J. Estimating the number of species with catchall. Pac Symp Biocomput. 2011;2011:121–130. PubMed

R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

Spiess A-N (2014) Propagate: propagation of uncertainty. R package

Holmes I, Harris K, Quince C. Dirichlet multinomial mixtures: generative models for microbial metagenomics. PLoS ONE. 2012;7:e30126. doi: 10.1371/journal.pone.0030126. PubMed DOI PMC

Morgan M (2014) Dirichlet multinomial: Dirichlet-multinomial mixture model machine learning for microbiome data. R package

Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Science & Business Media, Dordrecht

Valluru R, den Ende WV. Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot. 2008;59:2905–2916. doi: 10.1093/jxb/ern164. PubMed DOI

Teixeira LCRS, Peixoto RS, Cury JC, et al. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J. 2010;4:989–1001. doi: 10.1038/ismej.2010.35. PubMed DOI

Edwards J, Johnson C, Santos-Medellín C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci. 2015;112:E911–E920. doi: 10.1073/pnas.1414592112. PubMed DOI PMC

Peiffer JA, Spor A, Koren O, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci. 2013;110:6548–6553. doi: 10.1073/pnas.1302837110. PubMed DOI PMC

Nacke H, Thürmer A, Wollherr A, et al. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS ONE. 2011;6:e17000. doi: 10.1371/journal.pone.0017000. PubMed DOI PMC

Roesch LFW, Fulthorpe RR, Riva A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 2007;1:283–290. PubMed PMC

Angel R, Conrad R. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol. 2013;15:2799–2815. PubMed

Neilson JW, Quade J, Ortiz M, et al. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles. 2012;16:553–566. doi: 10.1007/s00792-012-0454-z. PubMed DOI

Steven B, Gallegos-Graves LV, Belnap J, Kuske CR. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material. FEMS Microbiol Ecol. 2013;86:101–113. doi: 10.1111/1574-6941.12143. PubMed DOI

Makhalanyane TP, Valverde A, Gunnigle E, et al. Microbial ecology of hot desert edaphic systems. FEMS Microbiol Rev. 2015;39:203–221. doi: 10.1093/femsre/fuu011. PubMed DOI

Mapelli F, Marasco R, Rizzi A, et al. Bacterial communities involved in soil formation and plant establishment triggered by pyrite bioweathering on Arctic moraines. Microb Ecol. 2010;61:438–447. doi: 10.1007/s00248-010-9758-7. PubMed DOI

Fierer N, Strickland MS, Liptzin D, et al. Global patterns in belowground communities. Ecol Lett. 2009;12:1238–1249. doi: 10.1111/j.1461-0248.2009.01360.x. PubMed DOI

Rime T, Hartmann M, Brunner I, et al. Vertical distribution of the soil microbiota along a successional gradient in a glacier forefield. Mol Ecol. 2015;24:1091–1108. doi: 10.1111/mec.13051. PubMed DOI

Yarwood S, Wick A, Williams M, Daniels WL. Parent material and vegetation influence soil microbial community structure following 30-years of rock weathering and pedogenesis. Microb Ecol. 2014;69:383–394. doi: 10.1007/s00248-014-0523-1. PubMed DOI

Knelman JE, Legg TM, O’Neill SP, et al. Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol Biochem. 2012;46:172–180. doi: 10.1016/j.soilbio.2011.12.001. DOI

Lester ED, Satomi M, Ponce A. Microflora of extreme arid Atacama Desert soils. Soil Biol Biochem. 2007;39:704–708. doi: 10.1016/j.soilbio.2006.09.020. DOI

Prestel E, Regeard C, Salamitou S, et al. The bacteria and bacteriophages from a Mesquite Flats site of the Death Valley Desert. Antonie Van Leeuwenhoek. 2013;103:1329–1341. doi: 10.1007/s10482-013-9914-4. PubMed DOI

Stres B, Sul WJ, Murovec B, Tiedje JM. Recently delaciated high-altitude soils of the Himalaya: diverse environments, heterogenous bacterial communities and long-range dust inputs from the upper troposphere. PLoS ONE. 2013;8:e76440. doi: 10.1371/journal.pone.0076440. PubMed DOI PMC

Bakker PAHM, Berendsen RL, Doornbos RF, et al. The rhizosphere revisited: root microbiomics. Front Plant Sci. 2013;4:165. doi: 10.3389/fpls.2013.00165. PubMed DOI PMC

Brankatschk R, Töwe S, Kleineidam K, et al. Abundances and potential activities of nitrogen cycling microbial communities along a chronosequence of a glacier forefield. ISME J. 2011;5:1025–1037. doi: 10.1038/ismej.2010.184. PubMed DOI PMC

Töwe S, Albert A, Kleineidam K, et al. Abundance of microbes involved in nitrogen transformation in the rhizosphere of Leucanthemopsis alpina (l.) Heywood grown in soils from different sites of the Damma Glacier forefield. Microb Ecol. 2010;60:762–770. doi: 10.1007/s00248-010-9695-5. PubMed DOI

Kämpfer P, Denner EBM, Meyer S, et al. Classification of Pseudomonas azotocolligans Anderson 1955, 132, in the genus Sphingomonas as Sphingomonas trueperi sp. nov. Int J Syst Bacteriol. 1997;47:577–583. doi: 10.1099/00207713-47-2-577. PubMed DOI

Haichar FZ, Marol C, Berge O, et al. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008;2:1221–1230. doi: 10.1038/ismej.2008.80. PubMed DOI

Qiu Q, Conrad R, Lu Y. Cross-feeding of methane carbon among bacteria on rice roots revealed by DNA-stable isotope probing. Environ Microbiol Rep. 2009;1:355–361. doi: 10.1111/j.1758-2229.2009.00045.x. PubMed DOI

Shivaji S, Ray MK, Rao NS, et al. Sphingobacterium antarcticus sp. nov., a psychrotrophic bacterium from the soils of Schirmacher Oasis, Antarctica. Int J Syst Bacteriol. 1992;42:102–106. doi: 10.1099/00207713-42-1-102. DOI

Mao J, Luo Y, Teng Y, Li Z. Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeterior Biodegrad. 2012;70:141–147. doi: 10.1016/j.ibiod.2012.03.002. DOI

Bardgett RD, Walker LR. Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol Biochem. 2004;36:555–559. doi: 10.1016/j.soilbio.2003.11.002. DOI

Kowalchuk GA, Buma DS, de Boer W, et al. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek. 2002;81:509–520. doi: 10.1023/A:1020565523615. PubMed DOI

Nunan N, Daniell TJ, Singh BK, et al. Links between plant and rhizoplane bacterial communities in grassland soils, characterized using molecular techniques. Appl Environ Microbiol. 2005;71:6784–6792. doi: 10.1128/AEM.71.11.6784-6792.2005. PubMed DOI PMC

Tscherko D, Hammesfahr U, Zeltner G, et al. Plant succession and rhizosphere microbial communities in a recently deglaciated alpine terrain. Basic Appl Ecol. 2005;6:367–383. doi: 10.1016/j.baae.2005.02.004. DOI

Miniaci C, Bunge M, Duc L, et al. Effects of pioneering plants on microbial structures and functions in a glacier forefield. Biol Fertil Soils. 2007;44:289–297. doi: 10.1007/s00374-007-0203-0. DOI

Řeháková K, Chroňáková A, Krištůfek V, et al. Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert. Terr Microbiol. 2015;6:304. PubMed PMC

Nelson EB. Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol. 2004;42:271–309. doi: 10.1146/annurev.phyto.42.121603.131041. PubMed DOI

Green SJ, Inbar E, Michel FC, et al. Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol. 2006;72:3975–3983. doi: 10.1128/AEM.02771-05. PubMed DOI PMC

Pérez-Ramírez NO, Rogel MA, Wang E, et al. Seeds of Phaseolus vulgaris bean carry Rhizobium etli. FEMS Microbiol Ecol. 1998;26:289–296. doi: 10.1016/S0168-6496(98)00043-9. DOI

Normander B, Prosser JI. Bacterial origin and community composition in the barley phytosphere as a function of habitat and presowing conditions. Appl Environ Microbiol. 2000;66:4372–4377. doi: 10.1128/AEM.66.10.4372-4377.2000. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...