Phenotypic Shifts in Macrophages Within Advanced Atherosclerotic Plaques in Humans

. 2025 Jun ; 7 (6) : e70017. [epub] 20250505

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40496346

The importance of macrophage polarization through atherogenesis is established. However, most studies rely on immunohistological approaches, which have several limitations, such as precluding comprehensive phenotypic analysis. The aim of this study was to perform an alternative analysis of macrophage phenotypes in advanced human atherosclerotic plaques and compare them with their presence in non-atherosclerotic arteries. Atherosclerotic plaques from 70 individuals indicated for carotid endarterectomy, and samples of non-atherosclerotic arterial tissue (renal artery, control group) from 45 living kidney donors were processed to obtain immunocytes and incubated with antibodies (CD45, CD14, CD16, CD36, CD163, and CD206) to be analyzed by flow cytometry. Macrophages in the atherosclerotic plaques tend to express CD16 more intensively than in non-atherosclerotic arterial tissue (transient, CD16low p < 0.001, pro-inflammatory, CD16high p < 0.001), and the expression is more closely associated with CD36 expression. Both transient and pro-inflammatory macrophages are linked with the CD206-CD163+ or CD206+CD163+ phenotype in atherosclerotic plaques, while CD206-CD163- dominates within the anti-inflammatory (CD16neg) population in the control group. Interestingly, when evaluating all macrophages (regardless of CD16 expression), almost all are CD163+ in both groups, supporting the critical importance of using a combination of specific markers. Our results provide a deeper insight into macrophage subpopulations in advanced human atherosclerotic plaques compared with those in non-atherosclerotic vessels. Additionally, our data highlight the critical importance of using appropriate techniques, such as flow cytometry, allowing for simultaneous analysis of multiple markers to accurately and comprehensively characterize macrophages within the atherosclerotic plaque.

Zobrazit více v PubMed

Yang B., Hang S., Xu S., et al., “Macrophage Polarisation and Inflammatory Mechanisms in Atherosclerosis: Implications for Prevention and Treatment,” Heliyon 10, no. 11 (2024): e32073, 10.1016/j.heliyon.2024.e32073. PubMed DOI PMC

Willemsen L. and de Winther M. P. J., “Macrophage Subsets in Atherosclerosis as Defined by Single‐Cell Technologies,” Journal of Pathology 250 (2020): 705–714, 10.1002/path.5392. PubMed DOI PMC

Baidžajevas K., Hadadi É., Lee B., et al., “Macrophage Polarisation Associated With Atherosclerosis Differentially Affects Their Capacity to Handle Lipids,” Atherosclerosis 305 (2020): 10–18, 10.1016/j.atherosclerosis.2020.05.003. PubMed DOI

Wang H., Liu D., and Zhang H., “Investigation of the Underlying Genes and Mechanism of Macrophage‐Enriched Ruptured Atherosclerotic Plaques Using Bioinformatics Method,” Journal of Atherosclerosis and Thrombosis 26 (2019): 636–658, 10.5551/jat.45963. PubMed DOI PMC

Schrijvers D. M., De Meyer G. R. Y., Kockx M. M., Herman A. G., and Martinet W., “Phagocytosis of Apoptotic Cells by Macrophages Is Impaired in Atherosclerosis,” Arteriosclerosis, Thrombosis, and Vascular Biology 25 (2005): 1256–1261, 10.1161/01.ATV.0000166517.18801.a7. PubMed DOI

Li H., Cao Z., Wang L., et al., “Macrophage Subsets and Death Are Responsible for Atherosclerotic Plaque Formation,” Frontiers in Immunology 13 (2022): 843712, 10.3389/fimmu.2022.843712. PubMed DOI PMC

Jinnouchi H., Guo L., Sakamoto A., et al., “Diversity of Macrophage Phenotypes and Responses in Atherosclerosis,” Cellular and Molecular Life Sciences 77 (2020): 1919–1932, 10.1007/s00018-019-03371-3. PubMed DOI PMC

Chinetti‐Gbaguidi G., Baron M., Bouhlel M. A., et al., “Human Atherosclerotic Plaque Alternative Macrophages Display Low Cholesterol Handling but High Phagocytosis Because of Distinct Activities of the PPARγ and LXRα Pathways,” Circulation Research 108 (2011): 985–995, 10.1161/CIRCRESAHA.110.233775. PubMed DOI PMC

Bobryshev Y. V., Ivanova E. A., Chistiakov D. A., Nikiforov N. G., and Orekhov A. N., “Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis,” BioMed Research International 2016 (2016): 1–13, 10.1155/2016/9582430. PubMed DOI PMC

Piollet M., Porsch F., Rizzo G., et al., “TREM2 Protects From Atherosclerosis by Limiting Necrotic Core Formation,” Nature Cardiovascular Research 3 (2024): 269–282, 10.1038/s44161-024-00429-9. PubMed DOI PMC

Patterson M. T., Firulyova M. M., Xu Y., et al., “Trem2 Promotes Foamy Macrophage Lipid Uptake and Survival in Atherosclerosis,” Nature Cardiovascular Research 2 (2023): 1015–1031, 10.1038/s44161-023-00354-3. PubMed DOI PMC

Finn A. V., Nakano M., Polavarapu R., et al., “Hemoglobin Directs Macrophage Differentiation and Prevents Foam Cell Formation in Human Atherosclerotic Plaques,” Journal of the American College of Cardiology 59 (2012): 166–177, 10.1016/j.jacc.2011.10.852. PubMed DOI PMC

Gutiérrez‐Muñoz C., Méndez‐Barbero N., Svendsen P., et al., “CD163 Deficiency Increases Foam Cell Formation and Plaque Progression in Atherosclerotic Mice,” FASEB Journal 34 (2020): 14960–14976, 10.1096/fj.202000177R. PubMed DOI

Potor L., Hendrik Z., Patsalos A., et al., “Oxidation of Hemoglobin Drives a Proatherogenic Polarization of Macrophages in Human Atherosclerosis,” Antioxidants & Redox Signaling 35 (2021): 917–950, 10.1089/ars.2020.8234. PubMed DOI PMC

Etzerodt A. and Moestrup S. K., “CD163 and Inflammation: Biological, Diagnostic, and Therapeutic Aspects,” Antioxidants & Redox Signaling 18 (2013): 2352–2363, 10.1089/ars.2012.4834. PubMed DOI PMC

Kralova Lesna I., Kralova A., Cejkova S., et al., “Characterisation and Comparison of Adipose Tissue Macrophages From Human Subcutaneous, Visceral and Perivascular Adipose Tissue,” Journal of Translational Medicine 14, no. 1 (2016): 208, 10.1186/s12967-016-0962-1. PubMed DOI PMC

Rogacev K. S., Cremers B., Zawada A. M., et al., “CD14 PubMed DOI

Allen N., Barrett T. J., Guo Y., et al., “Circulating Monocyte‐Platelet Aggregates Are a Robust Marker of Platelet Activity in Cardiovascular Disease,” Atherosclerosis 282 (2019): 11–18, 10.1016/j.atherosclerosis.2018.12.029. PubMed DOI

Bloch O., Blatt A., Appel M. Y., et al., “Coronary Atherosclerosis Severity Is Closely Associated With Decreased GLP‐1R Positivity Among CD16 PubMed DOI PMC

Bourlier V., Zakaroff‐Girard A., Miranville A., et al., “Remodeling Phenotype of Human Subcutaneous Adipose Tissue Macrophages,” Circulation 117 (2008): 806–815, 10.1161/CIRCULATIONAHA.107.724096. PubMed DOI

Kováčiková M., Sengenes C., Kováčová Z., et al., “Dietary Intervention‐Induced Weight Loss Decreases Macrophage Content in Adipose Tissue of Obese Women,” International Journal of Obesity 35 (2011): 91–98, 10.1038/ijo.2010.112. PubMed DOI

Kralova Lesna I., Petras M., Cejkova S., et al., “Cardiovascular Disease Predictors and Adipose Tissue Macrophage Polarization: Is There a Link?,” European Journal of Preventive Cardiology 25 (2018): 328–334, 10.1177/2047487317743355. PubMed DOI

Krychtiuk K. A., Kastl S. P., Hofbauer S. L., et al., “Monocyte Subset Distribution in Patients With Stable Atherosclerosis and Elevated Levels of Lipoprotein(a),” Journal of Clinical Lipidology 9 (2015): 533–541, 10.1016/j.jacl.2015.04.005. PubMed DOI PMC

Nozaki S., Kashiwagi H., Yamashita S., et al., “Reduced Uptake of Oxidized Low Density Lipoproteins in Monocyte‐Derived Macrophages From CD36‐Deficient Subjects,” Journal of Clinical Investigation 96 (1995): 1859–1865, 10.1172/JCI118231. PubMed DOI PMC

Tian K., Xu Y., Sahebkar A., and Xu S., “CD36 in Atherosclerosis: Pathophysiological Mechanisms and Therapeutic Implications,” Current Atherosclerosis Reports 22, no. 10 (2020): 59, 10.1007/s11883-020-00870-8. PubMed DOI

Young M. P., Febbraio M., and Silverstein R. L., “CD36 Modulates Migration of Mouse and Human Macrophages in Response to Oxidized LDL and May Contribute to Macrophage Trapping in the Arterial Intima,” Journal of Clinical Investigation 119 (2009): 136–145, 10.1172/JCI35535. PubMed DOI PMC

Nagy L., Tontonoz P., Alvarez J. G., Chen H., and Evans R. M., “Oxidized LDL Regulates Macrophage Gene Expression Through Ligand Activation of PPARγ,” Cell 93, no. 2 (1998): 229–240, 10.1016/S0092-8674(00)81574-3. PubMed DOI

Nakata A., Nakagawa Y., Nishida M., et al., “CD36, a Novel Receptor for Oxidized Low‐Density Lipoproteins, Is Highly Expressed on Lipid‐Laden Macrophages in Human Atherosclerotic Aorta,” Arteriosclerosis, Thrombosis, and Vascular Biology 19, no. 5 (1999): 1333–1339, 10.1161/01.ATV.19.5.1333. PubMed DOI

Kratz M., Coats B. R., Hisert K. B., et al., “Metabolic Dysfunction Drives a Mechanistically Distinct Proinflammatory Phenotype in Adipose Tissue Macrophages,” Cell Metabolism 20 (2014): 614–625, 10.1016/j.cmet.2014.08.010. PubMed DOI PMC

Guo L., Akahori H., Harari E., et al., “CD163 PubMed DOI PMC

Mosser D. M. and Edwards J. P., “Exploring the Full Spectrum of Macrophage Activation,” Nature Reviews. Immunology 8 (2008): 958–969, 10.1038/nri2448. PubMed DOI PMC

Stöger J. L., Gijbels M. J. J., van der Velden S., et al., “Distribution of Macrophage Polarization Markers in Human Atherosclerosis,” Atherosclerosis 225 (2012): 461–468, 10.1016/j.atherosclerosis.2012.09.013. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...