Bacterial community of cushion plant Thylacospermum ceaspitosum on elevational gradient in the Himalayan cold desert

. 2015 ; 6 () : 304. [epub] 20150416

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25932023

Although bacterial assemblages are important components of soils in arid ecosystems, the knowledge about composition, life-strategies, and environmental drivers is still fragmentary, especially in remote high-elevation mountains. We compared the quality and quantity of heterotrophic bacterial assemblages between the rhizosphere of the dominant cushion-forming plant Thylacospermum ceaspitosum and its surrounding bulk soil in two mountain ranges (East Karakoram: 4850-5250 m and Little Tibet: 5350-5850 m), in communities from cold steppes to the subnival zone in Ladakh, arid Trans-Himalaya, northwest India. Bacterial communities were characterized by molecular fingerprinting in combination with culture-dependent methods. The effects of environmental factors (elevation, mountain range, and soil physico-chemical parameters) on the bacterial community composition and structure were tested by multivariate redundancy analysis and conditional inference trees. Actinobacteria dominate the cultivable part of community and represent a major bacterial lineage of cold desert soils. The most abundant genera were Streptomyces, Arthrobacter, and Paenibacillus, representing both r- and K-strategists. The soil texture is the most important factor for the community structure and the total bacteria counts. Less abundant and diverse assemblages are found in East Karakoram with coarser soils derived from leucogranite bedrock, while more diverse assemblages in Little Tibet are associated with finer soils derived from easily weathering gneisses. Cushion rhizosphere is in general less diverse than bulk soil, and contains more r-strategists. K-strategists are more associated with the extremes of the gradient, with drought at lowest elevations (4850-5000 m) and frost at the highest elevations (5750-5850 m). The present study illuminates the composition of soil bacterial assemblages in relation to the cushion plant T. ceaspitosum in a xeric environment and brings important information about heterotrophic bacteria in Himalayan soil.

Zobrazit více v PubMed

Adler P. B., Hille Ris Lambers J., Levine J. M. (2007). A niche for neutrality. Ecol. Lett. 10, 95–104. 10.1111/j.1461-0248.2006.00996.x PubMed DOI

Amann R. I., Ludwig W., Schleifer H. K. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbial. Rev. 59, 143–169. PubMed PMC

Bardgett R. D., Walker L. R. (2004). Impact of coloniser plant species on the development of decomposer microbial communities following deglaciation. Soil Biol. Biochem. 36, 555–559 10.1016/j.soilbio.2003.11.002 DOI

Battistuzzi F. U., Hedges C. B. (2009). A Major clade of prokaryotes with ancient adaptations to life on land. Mol. Biol. Evol. 26, 335–343. 10.1093/molbev/msn247 PubMed DOI

Benjamini Y., Hochberg Y. (1995). Controlling the false discovery rate—a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 7, 289–300.

Bhutiyani M. R., Kale V. S., Pawar N. J. (2007). Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim. Change 85, 159–177 10.1007/s10584-006-9196-1 DOI

Bloem J., Veninga M., Sheperd J. (1995). Fully automatic determination of soil bacterium numbers, cell volumes, and frequencies of dividing cells by confocal laser scanning microscopy and image analysis. Appl. Environ. Microb. 61, 926–936. PubMed PMC

Bonkowski M. (2004). Protozoa and plant growth: the microbial loop in soil revisited. New Phytol. 162, 617–631 10.1111/j.1469-8137.2004.01066.x PubMed DOI

Breiman L. J., Friedman H., Olshen R. A., Stone C. G. (1984). Classification and Regression Trees. Belmont, CA: Wadsworth International Group.

Campbell B. J., Polson S. W., Hanson T. E., Mack M. C., Schuur E. A. G. (2010). The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ. Microbiol. 12, 1842–1854. 10.1111/j.1462-2920.2010.02189.x PubMed DOI

Carlson M. L., Flagstad L. A., Gillet F., Mitchell E. A. D. (2010). Community development along a proglacial chronosequence: are above-ground and below-ground community structure controlled more by biotic than abiotic factors? J. Ecol. 98, 1084–1095 10.1111/j.1365-2745.2010.01699.x DOI

Chakraborty S., Pangga I. B., Roper M. M. (2012). Climate change and multitrophic interactions in soil: the primacy of plants and functional domains. Global Change Biol. 18, 2111–2125 10.1111/j.1365-2486.2012.02667.x DOI

Chu H., Fierer N., Lauber C. L., Caporaso J. G., Knight R., Grogan P. (2010). Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environ. Microbiol. 12, 2998–3006. 10.1111/j.1462-2920.2010.02277.x PubMed DOI

Ciccazzo S., Esposito A., Rolli E., Zerbe S., Daffonchio D., Brusetti L. (2014). Different pioneer plant species select specific rhizospehere bacterial communities in a high mountain environment. Springerplus 3:391. 10.1186/2193-1801-3-391 PubMed DOI PMC

Clarholm M. (1985). Possible roles of roots, bacteria, protozoa and fungi in supplying nitrogen to plants, in Ecological Interactions in Soil, ed Fitter A. H. (Oxford: Blackwell; ), 297–317.

Cruz-Martínez K., Suttle K. B., Brodie E. L., Power M. E., Andersen G. L., Banfield J. F. (2009). Despite strong seasonal responses, soil microbial consortia are more resilient to long-term changes in rainfall than overlying grassland. ISME J. 3, 738–744. 10.1038/ismej.2009.16 PubMed DOI

De'ath G. (2002). Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83, 1105–1117.

Delbes C., Moletta R., Godon J. J. (2000). Monitoring of activity dynamics of an anaerobic digester bacterial community using 16S rRNA polymerase chain reaction – single-strand conformation polymorphism analysis. Environ. Microbiol. 2, 506–515. 10.1046/j.1462-2920.2000.00132.x PubMed DOI

De Ley P., Siddiqi M. R., Bostrom S. (1993). A revision of the genus Pseudacrobeles Stiner, 1938 (Nematoda: Cephalobidae). Part 2. subgenus Bunobus subg. n., Problematical species, discussion and key. Fundam. Appl. Nematol. 16, 289–308.

Dortch J. M., Owena L. A., Caffee M. W. (2010). Quaternary glaciation in the Nubra and Shyok valley confluence, northernmost Ladakh, India. Quaternary Res. 74, 132–144 10.1016/j.yqres.2010.04.013 DOI

Dvorský M., Doležal J., de Bello F., Klimešová J., Klimeš J. (2011). Vegetation types of East Ladakh: species and growth form composition along main environmental gradients. Appl. Veg Sci. 14, 132–147 10.1111/j.1654-109X.2010.01103.x DOI

Dvorský M., Doležal J., Kopecký M., Chlumská Z., Janatková K., de Bello F., et al. . (2013). Testing the stress-gradient hypothesis at the roof of the world: effects of the cushion plant Thylacospermum caespitosum on species assemblages. PLoS ONE 8:e53514. 10.1371/journal.pone.0053514 PubMed DOI PMC

Dworkin M., Falkow M. S., Rosenberg E., Schleifer K. H., Stackebrandt E. (2006). The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community. New York, NY: Springer-Verlag.

Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17, 7843–7853. 10.1093/nar/17.19.7843 PubMed DOI PMC

Elhottová D., Krýštufek V., Malý S., Frouz J. (2009). Rhizosphere Effect of Colonizer Plant Species on the Development of soil microbial community during primary succession on postmining sites. Commun. Soil Sci. Plan. 40, 758–770 10.1080/00103620802693193 DOI

Elliott M. L., McInroy J. A., Xiong K., Kim J. H., Skipper H. D., Guertal E. A. (2008). Taxonomic diversity of rhizosphere bacteria in golf course putting greens at representative sites in the Southeastern United States. Hortscience 43, 514–518.

Eskelinen A., Stark S., Mannisto M. (2009). Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats. Oecologia 161, 113–123. 10.1007/s00442-009-1362-5 PubMed DOI

Fenchel T., Finlay B. J. (2003). Is microbial diversity fundamentally different from biodiversity of larger animals and plants? Eur. J. Protistol. 39, 486–490 10.1078/0932-4739-00025 DOI

Ferrero M. A., Menoyo E., Lugo M. A., Negritto M. A., Farías M. E., Anton A. M., et al. (2010). Molecular characterization and in situ detection of bacterial communities associated with rhizosphere soil of high altitude native Poaceae from the Andean Puna region. J. Arid Environ. 74, 1177–1185 10.1016/j.jaridenv.2010.04.008 DOI

Fierer N., Bradford M. A., Jackson R. B. (2007). Towards an ecological classification of soil bacteria. Ecology 88, 1354–1364. 10.1890/05-1839 PubMed DOI

Fierer N., Jackson R. B. (2006). The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. U.S.A. 103, 626–631. 10.1073/pnas.0507535103 PubMed DOI PMC

Fierer N., Laubner C. L., Ramirez K. S., Zaneveld J., Bradford M. A., Knight R. (2012). Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 6, 1007–1017. 10.1038/ismej.2011.159 PubMed DOI PMC

Fierer N., Strickland M. S., Liptzin D., Bradford M. A., Cleveland C. C. (2009). Global patterns in belowground communities. Ecol. Lett. 12, 1238–1249. 10.1111/j.1461-0248.2009.01360.x PubMed DOI

Foght J. M., Aislabie J., Turner S., Brown C. E., Ryburn J., Saul D. J., et al. . (2004). Culturable bacteria in subglacial sediments and ice from two southern hemisphere glaciers. Microb. Ecol. 47, 329–340. 10.1007/s00248-003-1036-5 PubMed DOI

Fulthorpe R. R., Roesch L. F. W., Riva A., Triplett E. W. (2008). Distantly sampled soils carry few species in common. ISME J. 2, 901–910. 10.1038/ismej.2008.55 PubMed DOI

Gans J., Wolinsky M., Dunbar J. (2005). Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309, 1387–1390. 10.1126/science.1112665 PubMed DOI

Garland J. L., Cook K. L., Adams J. L., Kerkhof L. (2001). Culturability as an indicator of succession in microbial communities. Microb. Ecol. 42, 150–158. 10.1007/s00248-001-0002-3 PubMed DOI

Griffiths R. I., Thomson B. C., James P., Bell T., Bailey M., Whiteley A. S. (2011). The bacterial biogeography of British soils. Environ. Microbiol. 13, 1642–1654. 10.1111/j.1462-2920.2011.02480.x PubMed DOI

Gulati A., Sharma N., Vyas P., Sood S., Rahi P., Pathania V., et al. . (2010). Organic acid production and plant growth promotion as a function of phosphate solubilization by Acinetobacter rhizosphaerae strain BIHB 723 isolated from the cold deserts of the trans-Himalayas. Arch. Microbiol. 192, 975–983. 10.1007/s00203-010-0615-3 PubMed DOI

Hall T. A. (1999). Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98

Hartmann H. (1983). Pflanzengesellschaften entlang der Kashmirroute in Ladakh. Jahrb Vereins Schutze Bergwelt 48, 131–173.

Hasse C. C., Fedorova N. D., Galperin M. Y., Dibrov P. A. (2001). Sodium ion cycle in bacterial pathogens: evidence from cross-genome comparisons. Microbiol. Mol. Biol. Rev. 65, 353–370. 10.1128/MMBR.65.3.353-370.2001 PubMed DOI PMC

Hothorn T., Hornik K., Zeileis A. (2006). Unbiased recursive partitioning: a conditional inference framework. J. Comput. Graph. Stat. 15, 651–674 10.1198/106186006X133933 DOI

Hubert C., Loy A., Nickel M., Arnosti C., Baranyi C., Brüchert V., et al. . (2009). A constant flux of diverse thermophilic bacteria into the cold Arctic seabed. Science 325, 1541–1544. 10.1126/science.1174012 PubMed DOI

Junge K., Imhoff F., Staley T., Deming J. W. (2002). Phylogenetic diversity of numerically important Arctic seaice bacteria cultured at subzero temperature. Microb. Ecol. 43, 315–328. 10.1007/s00248-001-1026-4 PubMed DOI

Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., et al. . (2012). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721. 10.1099/ijs.0.038075-0 PubMed DOI

King A. J., Farrer E. C., Suding K. N., Schmidt S. K. (2012). Co-occurrence patterns of plant and soil bacteria in the high-alpine subnival zone track environmental harshness. Front. Microbiol. 3:347. 10.3389/fmicb.2012.00347 PubMed DOI PMC

Kirchne N., Grepe R., Stroeven A. P., Heyman J. (2011). Paleoglaciological reconstructions for the Tibetan Plateau during the last glacial cycle: evaluating numerical ice sheet simulations driven by GCM-ensembles. Quaternary Sci. Rev. 30, 248–267 10.1016/j.quascirev.2010.11.006 DOI

Klimeš L., Doležal J. (2010). An experimental assessment of the upper elevational limit of flowering plants in the western Himalayas. Ecography 33, 590–596 10.1111/j.1600-0587.2009.05967.x DOI

Klimešová J., Doležal J., Dvorský M., de Bello F., Klimeš L. (2011). Clonal growth forms in eastern Ladakh, Western Himalayas: classification and habitat preferences. Folia Geobot. 46, 191–217 10.1007/s12224-010-9076-3 DOI

Koch A. L. (2001). Bacterial Growth and Form. Dordrecht: Springer; 10.1007/978-94-017-0827-2 DOI

Krištůfek V., Elhottová D., Chroňáková A., Dostálková I., Picek T., Kalčík J. (2005). Growth strategy of heterotrophic bacterial population along successional sequence on spoil of brown coal colliery substrate. Folia Microbiol. 50, 427–435. 10.1007/BF02931425 PubMed DOI

Langer U., Böhme L., Böhme F. (2004). Classifications of soil microorganisms based on the growth properties: a crucial view of some commonly used terms. J. Plant Nutr. Soil Sci. 167, 267–269 10.1002/jpln.200421362 DOI

Leipe C., Demske D., Tarasov P. E., Wünnemann B., Riedel F., HIMPAC Project Members. (2014). Potencial of pollen and non-pollen palynomorph records from Tso Moriri (Trans-Himalaya, NW India) for reconstructing Holocene limnology and human-environmental interactions. Quat. Int. 348, 113–129 10.1016/j.quaint.2014.02.026 DOI

Lepš J., Šmilauer P. (2003). Multivariate Analysis of Ecological Data using CANOCO. Cambridge: Cambridge University Press; 10.1017/CBO9780511615146 DOI

Ley R. E., Williams M. W., Schmidt S. K. (2004). Microbial population dynamics in an extreme environment: controlling factors in talus soils at 3750 m in the Colorado Rocky Mountains. Biogeochemistry 68, 313–335 10.1023/B:BIOG.0000031032.58611.d0 DOI

Liu G. X., Hu P., Zhang W., Wu X., Yang X., Chen T., et al. . (2012). Variations in soil culturable bacteria communities and biochemical characteristics in the Dongkemadi glacier forefield along a chronosequence. Folia Microbiol. 57, 485–494. 10.1007/s12223-012-0159-9 PubMed DOI

Miehe G., Winiger M., Böhner J., Zhang Y. (2001). The climatic diagram map of High Asia. Purpose and concepts. Erdkunde 55, 94–97 10.3112/erdkunde.2001.01.06 DOI

Murrell W. G., Warth A. D. (1965). Composition and heat resistance of bacterial spores, in Spores III, eds Campbell L.L., Halvorson H.O. (Bethesda, MD: American Society for Microbiology; ), 1–24.

Owen L. A., Caffee M. W., Finkel R. C., Seong B. Y. (2008). Quaternary glaciations of the Himalayan–Tibetan orogen. J. Quat. Sci. 23, 513–531. 10.1002/jqs.1203 PubMed DOI

Phillips R. J. (2008). Geological map of the Karakoram fault zone, Eastern Karakoram, Ladakh, NW Himalaya. J. Maps 2008, 21–37 10.4113/jom.2008.98 DOI

R Development Core Team. (2013). R Foundation for Statistical Computing. Vienna.

Roesch L. F., Fulthorpe R. R., Riva A., Casella G., Hadwin A. K. M., Kent A. D., et al. . (2007). Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290. 10.1038/ismej.2007.53 PubMed DOI PMC

Roy J., Albert C. H., Ibanez S., Saccone P., Zinger L., Choler P., et al. . (2013). Microbes on the cliff: alpine cushion plants structure bacterial and fungal communities. Front. Microbiol. 4:64 10.3389/fmicb.2013.00064 PubMed DOI PMC

Shen C., Xiong J., Zhang H., Feng Y., Lin X., Li X., et al. (2013). Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountains. Soil Biol. Biochem. 57, 204–211 10.1016/j.soilbio.2012.07.013 DOI

Sigler W. V., Crivii S., Zeyer J. (2002). Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb. Ecol. 44, 306–316. 10.1007/s00248-002-2025-9 PubMed DOI

Sigler W. V., Nakatsu C. H., Reicher Z. J., Turco R. F. (2001). Fate of the biological control agent Pseudomonas aureofaciens TX-1 after application to turfgrass. Appl. Environ. Microbiol. 67, 3542–3548. 10.1128/AEM.67.8.3542-3548.2001 PubMed DOI PMC

Stach J. E. M., Bathe S., Clapp J. P., Burns R. G. (2001). PCR-SSCP comparison of 16S rDNA sequence diversity in soil DNA obtained using different isolation and purification methods. Fems Microbiol Ecol 36, 139–151. 10.1111/j.1574-6941.2001.tb00834.x PubMed DOI

Stark S., Eskelinen A., Mannisto M. K. (2012). Regulation of microbial community composition and activity by soil nutrient availability, soil pH, and herbivory in the Tundra. Ecosystems 15, 18–33 10.1007/s10021-011-9491-1 DOI

ter Braak C. J. F., Smilauer P. (2012). Canoco Reference Manual and Users's Guide: Software for Ordination (Version 5.0). Ithaca, NY: Microcomputer Power.

van der Heijden M. G. A., Bardgett R. D., van Straalen N. M. (2008). The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11, 296–310. 10.1111/j.1461-0248.2007.01139.x PubMed DOI

Vyas P., Rahi P., Gulati A. (2009). Stress tolerance and genetic variability of phosphate-solubilizing fluorescent pseudomonas from the cold deserts of the trans-Himalayas. Microb. Ecol. 58, 425–434. 10.1007/s00248-009-9511-2 PubMed DOI

Wang J. (1988). The steppes and deserts of Xizang Plateau (Tibet). Vegetatio 7, 135–142.

Wang J., Soininen J., He J., Shen J. (2012). Phylogenetic clustering increases with elevation for microbes. Environ. Microbiol. Rep. 4, 217–226. 10.1111/j.1758-2229.2011.00324.x PubMed DOI

Warth A. D. (1979). Molecular structure of the bacterial spore. Adv. Microb. Physiol. 17, 1–45. 10.1016/S0065-2911(08)60056-9 PubMed DOI

Yang H., Lou H. (2011). Succesion and growth strategy of a spring microbial community from Kezhou sinter in China. Braz. J. Microbiol. 42, 41–45. 10.1590/S1517-83822011000100005 PubMed DOI PMC

Young E., Fitz-James P. C. (1962). Chemical and morphological studies of bacterial spore formation. J. Cell Biol. 12, 115–133. 10.1083/jcb.12.1.115 PubMed DOI PMC

Zinger L., Gury J., Alibeu O., Rioux D., Gielly L., Sage L., et al. . (2008). CE-SSCP and CE-FLA, simple and high-throughput alternatives for fungal diversity studies. J. Microbiol. Methods 72, 42–53. 10.1016/j.mimet.2007.10.005 PubMed DOI

Zinger L., Gury J., Giraud F., Krivobok S., Gielly L., Taberlet P., et al. . (2007). Improvements of polymerase chain reaction and capillary electrophoresis single-strand conformation polymorphism methods in microbial ecology: toward a high-throughput method for microbial diversity studies in soil. Microb. Ecol. 54, 203–216. 10.1007/s00248-006-9151-8 PubMed DOI

Zumsteg A., Bernasconi S. M., Zeyer J., Frey B. (2011). Microbial community and activity shifts after soil transplantation in a glacier forefield. Appl. Geochem. 26, S326–S329 10.1016/j.apgeochem.2011.03.078 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...