Could Milkability Parameters Serve as a Reliable Tool to Predict the Morphology of Teat Structures and Their Milking-Induced Changes?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
grant n. QK21010123
National Agency for Agricultural Research of the Ministry of Agriculture of the Czech Republic
grant n. SV24-3-21320
SGS
CEP - Centrální evidence projektů
Project No. 011PU-4/2024
the Cultural and Educational Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic
PubMed
39765514
PubMed Central
PMC11672514
DOI
10.3390/ani14243610
PII: ani14243610
Knihovny.cz E-zdroje
- Klíčová slova
- dairy cows, milkability, precision agriculture, teat canal, udder health, ultrasonography,
- Publikační typ
- časopisecké články MeSH
The study aimed to explore if milkability parameters could reliably predict the dimensions of teat structures and their milking-induced changes. Ultrasonography repeatedly measured the teat structures of 48 Holstein cows from mid to late lactation. We found that milking-induced changes in each structure are affected by different milkability parameters. Regression models for teat canal change and length change were significant, and variability was found to be 46.03% and 21.50%, respectively. Similarly, the teat structure's dimensions significantly affected milkability parameters, which differed for each structure. However, regression models only explained between 3.36% (teat length) and 7.59% (cistern) of variability. The prediction potential, performed based on milkability, is limited if the initial dimensions of structures are not provided. If teat dimensions were measured at the beginning of the production life, automatically collected milkability data could be used to calculate milking-induced changes incurred with each milking and the development of teat dimensions over the production life. If perfected, this tool could provide alerts about critical milking-induced changes and risky teat conformation traits, as they have a proven effect on udder health and are reliable indicators of milking effectiveness.
Zobrazit více v PubMed
Martin L.M., Stöcker C., Sauerwein H., Büscher W., Müller U. Evaluation of inner teat morphology by using high-resolution ultrasound: Changes due to milking and establishment of measurement traits of the distal teat canal. J. Dairy Sci. 2018;101:8417–8428. doi: 10.3168/jds.2018-14500. PubMed DOI
Halasa T., Huijps K., Østerås O., Hogeveen H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007;29:18–31. doi: 10.1080/01652176.2007.9695224. PubMed DOI
Seykora A.J., McDaniel B.T. Udder and teat morphology related to mastitis resistance: A review. J. Dairy Sci. 1985;68:2087–2093. doi: 10.3168/jds.S0022-0302(85)81072-9. PubMed DOI
Guarín J.F., Ruegg P.L. Short communication: Pre- and postmilking anatomical characteristics of teats and their associations with risk of clinical mastitis in dairy cows. J. Dairy Sci. 2016;99:8323–8329. doi: 10.3168/jds.2015-10093. PubMed DOI
Svennesen L., Lund T.B., Skarbye A.P., Klaas I.C., Nielsen S.S. Expert evaluation of different infection types in dairy cow quarters naturally infected with Staphylococcus aureus or Streptococcus agalactiae. Prev. Vet. Med. 2019;167:16–23. doi: 10.1016/j.prevetmed.2019.03.016. PubMed DOI
Derakhshani H., Fehr K.B., Sepehri S., Francoz D., De Buck J., Barkema H.W., Plaizier J.C., Khafipour E. Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J. Dairy Sci. 2018;101:10605–10625. doi: 10.3168/jds.2018-14860. PubMed DOI
Neijenhuis F. Mastitis therapy and control: Role of milking machines in control of mastitis. In: Fuquay J.W., editor. Encyclopedia of Dairy Sciences. 2nd ed. Academic Press; San Diego, CA, USA: 2011. pp. 440–446.
Zwertvaegher I., De Vliegher S., Verbist B., Van Nuffel A., Baert J., Van Weyenberg S. Short communication: Associations between teat dimensions and milking-induced changes in teat dimensions and quarter milk somatic cell counts in dairy cows. J. Dairy Sci. 2013;96:1075–1080. doi: 10.3168/jds.2012-5636. PubMed DOI
Paulrud C., Clausen S., Andersen P., Rasmussen M.D. Infrared thermography and ultrasonography to indirectly monitor the influence of liner type and overmilking on teat tissue recovery. Acta Vet. Scand. 2005;46:137–147. doi: 10.1186/1751-0147-46-137. PubMed DOI PMC
Hamann J., Mein G.A. Teat thickness changes may provide biological test for effective pulsation. J. Dairy Res. 1996;63:179–189. doi: 10.1017/S002202990003168X. PubMed DOI
Penry J.F., Upton J., Mein G.A., Rasmussen M.D., Ohnstad I., Thompson P.D., Reinemann D.J. Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion. J. Dairy Sci. 2017;100:821–827. doi: 10.3168/jds.2016-11533. PubMed DOI
Melvin J.M., Heuwieser W., Virkler P.D., Nydam D.V., Wieland M. Machine milking-induced changes in teat canal dimensions as assessed by ultrasonography. J. Dairy Sci. 2019;102:2657–2669. doi: 10.3168/jds.2018-14968. PubMed DOI
Szencziová I., Strapák P., Stádník L., Ducháček J., Beran J. Relationship of udder and teat morphology to milking characteristics and udder health determined by ultrasonographic examinations in dairy cows. Ann. Anim. Sci. 2013;13:783–795. doi: 10.2478/aoas-2013-0053. DOI
Mein G., Reinemann D., Schuring N., Ohnstad I. Milking machines and mastitis risk: A storm in a Teatcup; Proceedings of the National Mastitis Council Annual Meeting, 43nd Annual Meeting of the National Mastitis Council; Charlotte, NC, USA. 1–4 February 2004; pp. 176–188.
Gašparík M., Ducháček J., Stádník L., Vrhel M., Ptáček M. Milkability characteristics of Jersey cows throughout the lactation and their effect on milking induced teat prolongation. Mljekarstvo. 2022;72:114–122. doi: 10.15567/mljekarstvo.2022.0205. DOI
Weiss D., Weinfurtner M., Bruckmaier R.M. Teat anatomy and its relationship with quarter and udder milk flow characteristics in dairy cows. J. Dairy Sci. 2004;87:3280–3289. doi: 10.3168/jds.S0022-0302(04)73464-5. PubMed DOI
Nørstebø H., Rachah A., Dalen G., Rønningen O., Whist A.C., Reksen O. Milk-flow data collected routinely in an automatic milking system: An alternative to milking-time testing in the management of teat-end condition? Acta Vet. Scand. 2018;60:2. doi: 10.1186/s13028-018-0356-x. PubMed DOI PMC
Bobić T., Mijić P., Vučković G., Gregić M., Baban M., Gantner V. Morphological and milkability breed differences of dairy cows. Mljekarstvo. 2014;64:71–78.
Strapák P., Strapáková E., Rušinová M., Szencziová I. The influence of milking on the teat canal of dairy cows determined by ultrasonographic measurements. Czech J. Anim. Sci. 2017;62:75–81. doi: 10.17221/68/2015-CJAS. DOI
Neijenhuis F., Klungel G.H., Hogeveen H. Recovery of cow teats after milking as determined by ultrasonographic scanning. J. Dairy Sci. 2001;84:2599–2606. doi: 10.3168/jds.S0022-0302(01)74714-5. PubMed DOI
Wieland M., Melvin J.M., Virkler P.D., Nydam D.V., Heuwieser W. Technical note: Development and evaluation of a standard operating procedure for ultrasound-based measurements of teat canal dimensions in dairy cows. J. Dairy Sci. 2018;101:1518–1523. doi: 10.3168/jds.2017-13326. PubMed DOI
Zecconi A., Hamann J., Bronzo V., Ruffo G. Machine-induced teat tissue reactions and infection risk in a dairy herd free from contagious mastitis pathogens. J. Dairy Res. 1992;59:265–271. doi: 10.1017/S0022029900030545. PubMed DOI
Zecconi A., Bronzo V., Piccinini R., Moroni P., Ruffo G. Field study on the relationship between teat thickness changes and intramammary infections. J. Dairy Res. 1996;63:361–368. doi: 10.1017/S0022029900031885. PubMed DOI
Klein D., Flöck M., Khol J.L., Franz S., Stüger H.P., Baumgartner W. Ultrasonographic measurement of the bovine teat: Breed differences, and the significance of the measurements for udder health. J. Dairy Res. 2005;72:296–302. doi: 10.1017/S0022029905000920. PubMed DOI
Česká Národní Rada . Zákon č. 246/1992 Sb. na Ochranu Zvířat Proti Týrání. Česká Národní Rada; Prague, Czechia: 1992. [(accessed on 29 September 2024)]. Available online: https://www.zakonyprolidi.cz/cs/1992-246.
European Parliament. Council of the European Union . DIRECTIVE 2010/63/EU on the Protection of Animals Used for Scientific Purposes. European Parliament; Brussels, Belgium: 2010. [(accessed on 29 September 2024)]. Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj.
Wieland M., Virkler P.D., Borkowski A.H., Älveby N., Wood P., Nydam D.V. An observational study investigating the association of ultrasonographically assessed machine milking-induced changes in teat condition and teat-end shape in dairy cows. Animal. 2019;13:341–348. doi: 10.1017/S1751731118001246. PubMed DOI
Afimilk . Afifarm 3.08 User Manual. Afimilk; Afikim, Israel: 2011.
Dzidic A., Kaps M., Bruckmaier R.M. Machine Milking of Istrian Dairy Crossbreed Ewes: Udder Morphology and Milking Characteristics. Small Rumin. Res. 2004;55:183–189. doi: 10.1016/j.smallrumres.2004.02.003. DOI
Gašparík M., Szencziová I., Ducháček J., Tóthová Tarová E., Stádník L., Nagy M., Kejdová Rysová L., Vrhel M., Legarová V. Complex relationships between milking-induced changes in teat structures and their pre-milking dimensions in Holstein cows. Animal. 2023;13:1085. doi: 10.3390/ani13061085. PubMed DOI PMC
SAS Institute . Statistical Analysis Software (SAS) User’s Guide Version 9.4. SAS Institute, Inc.; Cary, NC, USA: 2016.
Fasulkov I., Vasilev N., Karadaev M., Dineva G. Visualization and Measurement of Teat Structures in Black-and-White Cows Through Ultrasonography. Maced. Vet. Rev. 2014;37:89–93. doi: 10.14432/j.macvetrev.2014.02.010. DOI
Geishauser T., Querengässer K. Investigations on Teat Canal Length in Teats with Milk Flow Disturbances. J Dairy Sci. 2000;83:1976–1980. doi: 10.3168/jds.S0022-0302(00)75074-0. PubMed DOI
O’shea J. Machine Milking Factors Affecting Mastitis. A Literature Review. Bulletin International Dairy Federation; Bruxelles, Belgium: 1987.
Edwards J.P., O’Brien B., Lopez-Villalobos N., Jago J.G. Overmilking Causes Deterioration in Teat-End Condition of Dairy Cows in Late Lactation. J. Dairy Res. 2013;80:344–348. doi: 10.1017/S0022029913000307. PubMed DOI
Hamann J., Mein G.A., Wetzel S. Teat Tissue Reactions to Milking: Effects of Vacuum Level. J. Dairy Sci. 1993;76:1040–1046. doi: 10.3168/jds.S0022-0302(93)77432-9. PubMed DOI
Isaksson A., Lind O. Teat Reactions in Cows Associated with Machine Milking. Zentralbl Vet. A. 1992;39:282–288. doi: 10.1111/j.1439-0442.1992.tb00184.x. PubMed DOI
Hamann J., Mein G.A. Measurement of Machine-Induced Changes in Thickness of the Bovine Teat. J. Dairy Res. 1990;57:495–505. doi: 10.1017/S002202990002954X. PubMed DOI
Stauffer C., Van der Vekens E., Stoffel M.H., Schweizer D., Bruckmaier R.M. Increased Teat Wall Thickness in Response to Machine Milking. J. Dairy Sci. 2021;104:9082–9092. doi: 10.3168/jds.2021-20294. PubMed DOI
Dechow C.D., Sondericker K.S., Enab A.A., Hardie L.C. Genetic, Farm, and Lactation Effects on Behavior and Performance of US Holsteins in Automated Milking Systems. J. Dairy Sci. 2020;103:11503–11514. doi: 10.3168/jds.2020-18786. PubMed DOI
Tilki M., Inal S., Colak M., Garip M. Relationships Between Milk Yield and Udder Measurements in Brown Swiss Cows. Turk. J. Vet. Anim. Sci. 2005;29:75–81.