Could Milkability Parameters Serve as a Reliable Tool to Predict the Morphology of Teat Structures and Their Milking-Induced Changes?

. 2024 Dec 14 ; 14 (24) : . [epub] 20241214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39765514

Grantová podpora
grant n. QK21010123 National Agency for Agricultural Research of the Ministry of Agriculture of the Czech Republic
grant n. SV24-3-21320 SGS CEP - Centrální evidence projektů
Project No. 011PU-4/2024 the Cultural and Educational Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic

The study aimed to explore if milkability parameters could reliably predict the dimensions of teat structures and their milking-induced changes. Ultrasonography repeatedly measured the teat structures of 48 Holstein cows from mid to late lactation. We found that milking-induced changes in each structure are affected by different milkability parameters. Regression models for teat canal change and length change were significant, and variability was found to be 46.03% and 21.50%, respectively. Similarly, the teat structure's dimensions significantly affected milkability parameters, which differed for each structure. However, regression models only explained between 3.36% (teat length) and 7.59% (cistern) of variability. The prediction potential, performed based on milkability, is limited if the initial dimensions of structures are not provided. If teat dimensions were measured at the beginning of the production life, automatically collected milkability data could be used to calculate milking-induced changes incurred with each milking and the development of teat dimensions over the production life. If perfected, this tool could provide alerts about critical milking-induced changes and risky teat conformation traits, as they have a proven effect on udder health and are reliable indicators of milking effectiveness.

Zobrazit více v PubMed

Martin L.M., Stöcker C., Sauerwein H., Büscher W., Müller U. Evaluation of inner teat morphology by using high-resolution ultrasound: Changes due to milking and establishment of measurement traits of the distal teat canal. J. Dairy Sci. 2018;101:8417–8428. doi: 10.3168/jds.2018-14500. PubMed DOI

Halasa T., Huijps K., Østerås O., Hogeveen H. Economic effects of bovine mastitis and mastitis management: A review. Vet. Q. 2007;29:18–31. doi: 10.1080/01652176.2007.9695224. PubMed DOI

Seykora A.J., McDaniel B.T. Udder and teat morphology related to mastitis resistance: A review. J. Dairy Sci. 1985;68:2087–2093. doi: 10.3168/jds.S0022-0302(85)81072-9. PubMed DOI

Guarín J.F., Ruegg P.L. Short communication: Pre- and postmilking anatomical characteristics of teats and their associations with risk of clinical mastitis in dairy cows. J. Dairy Sci. 2016;99:8323–8329. doi: 10.3168/jds.2015-10093. PubMed DOI

Svennesen L., Lund T.B., Skarbye A.P., Klaas I.C., Nielsen S.S. Expert evaluation of different infection types in dairy cow quarters naturally infected with Staphylococcus aureus or Streptococcus agalactiae. Prev. Vet. Med. 2019;167:16–23. doi: 10.1016/j.prevetmed.2019.03.016. PubMed DOI

Derakhshani H., Fehr K.B., Sepehri S., Francoz D., De Buck J., Barkema H.W., Plaizier J.C., Khafipour E. Invited review: Microbiota of the bovine udder: Contributing factors and potential implications for udder health and mastitis susceptibility. J. Dairy Sci. 2018;101:10605–10625. doi: 10.3168/jds.2018-14860. PubMed DOI

Neijenhuis F. Mastitis therapy and control: Role of milking machines in control of mastitis. In: Fuquay J.W., editor. Encyclopedia of Dairy Sciences. 2nd ed. Academic Press; San Diego, CA, USA: 2011. pp. 440–446.

Zwertvaegher I., De Vliegher S., Verbist B., Van Nuffel A., Baert J., Van Weyenberg S. Short communication: Associations between teat dimensions and milking-induced changes in teat dimensions and quarter milk somatic cell counts in dairy cows. J. Dairy Sci. 2013;96:1075–1080. doi: 10.3168/jds.2012-5636. PubMed DOI

Paulrud C., Clausen S., Andersen P., Rasmussen M.D. Infrared thermography and ultrasonography to indirectly monitor the influence of liner type and overmilking on teat tissue recovery. Acta Vet. Scand. 2005;46:137–147. doi: 10.1186/1751-0147-46-137. PubMed DOI PMC

Hamann J., Mein G.A. Teat thickness changes may provide biological test for effective pulsation. J. Dairy Res. 1996;63:179–189. doi: 10.1017/S002202990003168X. PubMed DOI

Penry J.F., Upton J., Mein G.A., Rasmussen M.D., Ohnstad I., Thompson P.D., Reinemann D.J. Estimating teat canal cross-sectional area to determine the effects of teat-end and mouthpiece chamber vacuum on teat congestion. J. Dairy Sci. 2017;100:821–827. doi: 10.3168/jds.2016-11533. PubMed DOI

Melvin J.M., Heuwieser W., Virkler P.D., Nydam D.V., Wieland M. Machine milking-induced changes in teat canal dimensions as assessed by ultrasonography. J. Dairy Sci. 2019;102:2657–2669. doi: 10.3168/jds.2018-14968. PubMed DOI

Szencziová I., Strapák P., Stádník L., Ducháček J., Beran J. Relationship of udder and teat morphology to milking characteristics and udder health determined by ultrasonographic examinations in dairy cows. Ann. Anim. Sci. 2013;13:783–795. doi: 10.2478/aoas-2013-0053. DOI

Mein G., Reinemann D., Schuring N., Ohnstad I. Milking machines and mastitis risk: A storm in a Teatcup; Proceedings of the National Mastitis Council Annual Meeting, 43nd Annual Meeting of the National Mastitis Council; Charlotte, NC, USA. 1–4 February 2004; pp. 176–188.

Gašparík M., Ducháček J., Stádník L., Vrhel M., Ptáček M. Milkability characteristics of Jersey cows throughout the lactation and their effect on milking induced teat prolongation. Mljekarstvo. 2022;72:114–122. doi: 10.15567/mljekarstvo.2022.0205. DOI

Weiss D., Weinfurtner M., Bruckmaier R.M. Teat anatomy and its relationship with quarter and udder milk flow characteristics in dairy cows. J. Dairy Sci. 2004;87:3280–3289. doi: 10.3168/jds.S0022-0302(04)73464-5. PubMed DOI

Nørstebø H., Rachah A., Dalen G., Rønningen O., Whist A.C., Reksen O. Milk-flow data collected routinely in an automatic milking system: An alternative to milking-time testing in the management of teat-end condition? Acta Vet. Scand. 2018;60:2. doi: 10.1186/s13028-018-0356-x. PubMed DOI PMC

Bobić T., Mijić P., Vučković G., Gregić M., Baban M., Gantner V. Morphological and milkability breed differences of dairy cows. Mljekarstvo. 2014;64:71–78.

Strapák P., Strapáková E., Rušinová M., Szencziová I. The influence of milking on the teat canal of dairy cows determined by ultrasonographic measurements. Czech J. Anim. Sci. 2017;62:75–81. doi: 10.17221/68/2015-CJAS. DOI

Neijenhuis F., Klungel G.H., Hogeveen H. Recovery of cow teats after milking as determined by ultrasonographic scanning. J. Dairy Sci. 2001;84:2599–2606. doi: 10.3168/jds.S0022-0302(01)74714-5. PubMed DOI

Wieland M., Melvin J.M., Virkler P.D., Nydam D.V., Heuwieser W. Technical note: Development and evaluation of a standard operating procedure for ultrasound-based measurements of teat canal dimensions in dairy cows. J. Dairy Sci. 2018;101:1518–1523. doi: 10.3168/jds.2017-13326. PubMed DOI

Zecconi A., Hamann J., Bronzo V., Ruffo G. Machine-induced teat tissue reactions and infection risk in a dairy herd free from contagious mastitis pathogens. J. Dairy Res. 1992;59:265–271. doi: 10.1017/S0022029900030545. PubMed DOI

Zecconi A., Bronzo V., Piccinini R., Moroni P., Ruffo G. Field study on the relationship between teat thickness changes and intramammary infections. J. Dairy Res. 1996;63:361–368. doi: 10.1017/S0022029900031885. PubMed DOI

Klein D., Flöck M., Khol J.L., Franz S., Stüger H.P., Baumgartner W. Ultrasonographic measurement of the bovine teat: Breed differences, and the significance of the measurements for udder health. J. Dairy Res. 2005;72:296–302. doi: 10.1017/S0022029905000920. PubMed DOI

Česká Národní Rada . Zákon č. 246/1992 Sb. na Ochranu Zvířat Proti Týrání. Česká Národní Rada; Prague, Czechia: 1992. [(accessed on 29 September 2024)]. Available online: https://www.zakonyprolidi.cz/cs/1992-246.

European Parliament. Council of the European Union . DIRECTIVE 2010/63/EU on the Protection of Animals Used for Scientific Purposes. European Parliament; Brussels, Belgium: 2010. [(accessed on 29 September 2024)]. Available online: https://eur-lex.europa.eu/eli/dir/2010/63/oj.

Wieland M., Virkler P.D., Borkowski A.H., Älveby N., Wood P., Nydam D.V. An observational study investigating the association of ultrasonographically assessed machine milking-induced changes in teat condition and teat-end shape in dairy cows. Animal. 2019;13:341–348. doi: 10.1017/S1751731118001246. PubMed DOI

Afimilk . Afifarm 3.08 User Manual. Afimilk; Afikim, Israel: 2011.

Dzidic A., Kaps M., Bruckmaier R.M. Machine Milking of Istrian Dairy Crossbreed Ewes: Udder Morphology and Milking Characteristics. Small Rumin. Res. 2004;55:183–189. doi: 10.1016/j.smallrumres.2004.02.003. DOI

Gašparík M., Szencziová I., Ducháček J., Tóthová Tarová E., Stádník L., Nagy M., Kejdová Rysová L., Vrhel M., Legarová V. Complex relationships between milking-induced changes in teat structures and their pre-milking dimensions in Holstein cows. Animal. 2023;13:1085. doi: 10.3390/ani13061085. PubMed DOI PMC

SAS Institute . Statistical Analysis Software (SAS) User’s Guide Version 9.4. SAS Institute, Inc.; Cary, NC, USA: 2016.

Fasulkov I., Vasilev N., Karadaev M., Dineva G. Visualization and Measurement of Teat Structures in Black-and-White Cows Through Ultrasonography. Maced. Vet. Rev. 2014;37:89–93. doi: 10.14432/j.macvetrev.2014.02.010. DOI

Geishauser T., Querengässer K. Investigations on Teat Canal Length in Teats with Milk Flow Disturbances. J Dairy Sci. 2000;83:1976–1980. doi: 10.3168/jds.S0022-0302(00)75074-0. PubMed DOI

O’shea J. Machine Milking Factors Affecting Mastitis. A Literature Review. Bulletin International Dairy Federation; Bruxelles, Belgium: 1987.

Edwards J.P., O’Brien B., Lopez-Villalobos N., Jago J.G. Overmilking Causes Deterioration in Teat-End Condition of Dairy Cows in Late Lactation. J. Dairy Res. 2013;80:344–348. doi: 10.1017/S0022029913000307. PubMed DOI

Hamann J., Mein G.A., Wetzel S. Teat Tissue Reactions to Milking: Effects of Vacuum Level. J. Dairy Sci. 1993;76:1040–1046. doi: 10.3168/jds.S0022-0302(93)77432-9. PubMed DOI

Isaksson A., Lind O. Teat Reactions in Cows Associated with Machine Milking. Zentralbl Vet. A. 1992;39:282–288. doi: 10.1111/j.1439-0442.1992.tb00184.x. PubMed DOI

Hamann J., Mein G.A. Measurement of Machine-Induced Changes in Thickness of the Bovine Teat. J. Dairy Res. 1990;57:495–505. doi: 10.1017/S002202990002954X. PubMed DOI

Stauffer C., Van der Vekens E., Stoffel M.H., Schweizer D., Bruckmaier R.M. Increased Teat Wall Thickness in Response to Machine Milking. J. Dairy Sci. 2021;104:9082–9092. doi: 10.3168/jds.2021-20294. PubMed DOI

Dechow C.D., Sondericker K.S., Enab A.A., Hardie L.C. Genetic, Farm, and Lactation Effects on Behavior and Performance of US Holsteins in Automated Milking Systems. J. Dairy Sci. 2020;103:11503–11514. doi: 10.3168/jds.2020-18786. PubMed DOI

Tilki M., Inal S., Colak M., Garip M. Relationships Between Milk Yield and Udder Measurements in Brown Swiss Cows. Turk. J. Vet. Anim. Sci. 2005;29:75–81.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...