Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
19-12023S
Grantová Agentura České Republiky
PubMed
34999953
DOI
10.1007/s00418-021-02067-9
PII: 10.1007/s00418-021-02067-9
Knihovny.cz E-zdroje
- Klíčová slova
- Caspase-9, Chondrogenic differentiation, Micromasses, Mmp-9, Non-apoptotic functions,
- MeSH
- buněčná diferenciace MeSH
- chondrocyty * MeSH
- chondrogeneze * fyziologie MeSH
- inhibitory kaspas metabolismus farmakologie MeSH
- kaspasa 9 genetika metabolismus MeSH
- kultivované buňky MeSH
- myši MeSH
- osteogeneze MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory kaspas MeSH
- kaspasa 9 MeSH
Besides cell death, caspase-9 participates in non-apoptotic events, including cell differentiation. To evaluate a possible impact on the expression of chondrogenic/osteogenic factors, a caspase-9 inhibitor was tested in vitro. For this purpose, mouse forelimb-derived micromass cultures, the most common chondrogenic in vitro model, were used. The following analyses were performed based on polymerase chain reaction (PCR) arrays and real-time PCR. The expression of several chondrogenesis-related genes was shown to be altered, some of which may impact chondrogenic differentiation (Bmp4, Bmp7, Sp7, Gli1), mineral deposition (Alp, Itgam) or the remodelling of the extracellular matrix (Col1a2, Mmp9) related to endochondral ossification. From the cluster of genes with altered expression, Mmp9 showed the most significant decrease in expression, of more than 50-fold. Additionally, we determined the possible impact of caspase-9 downregulation on the expression of other Mmp genes. A mild increase in Mmp14 was observed, but there was no change in the expression of other studied Mmp genes (-2, -3, -8, -10, -12, -13). Interestingly, inhibition of Mmp9 in micromasses led to decreased expression of some chondrogenic markers related to caspase-9. These samples also showed a decreased expression of caspase-9 itself, suggesting a bidirectional regulation of these two enzymes. These results indicate a specific impact of caspase-9 inhibition on the expression of Mmp9. The localisation of these two enzymes overlaps in resting, proliferative and pre-hypertrophic chondrocytes during in vivo development, which supports their multiple functions, either apoptotic or non-apoptotic. Notably, a coincidental expression pattern was identified in Pik3cg, a possible candidate for Mmp9 regulation.
Zobrazit více v PubMed
Adamova E, Janeckova E, Kleparnik K, Matalova E (2016) Caspases and osteogenic markers – in vitro screening of inhibition impact. In Vitro Cell Dev Biol Anim 52:144–148. https://doi.org/10.1007/S11626-015-9964-1 PubMed DOI
Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744. https://doi.org/10.1038/35036374 PubMed DOI PMC
Bíliková P, Švandová E, Veselá B et al (2019) Coupling activation of pro-apoptotic caspases with autophagy in the Meckel’s cartilage. Physiol Res 68:135–140. https://doi.org/10.33549/physiolres.933947 PubMed DOI
Bruni-Cardoso A, Johnson L, Vessella R et al (2010) Osteoclast-derived matrix metalloproteinase-9 directly affects angiogenesis in the prostate tumor-bone microenvironment. Mol Cancer Res 8:459–470. https://doi.org/10.1158/1541-7786.MCR-09-0445 PubMed DOI PMC
Butterfield N, Qian C, Logan M (2017) Pitx1 determines characteristic hindlimb morphologies in cartilage micromass culture. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0180453 PubMed DOI PMC
Chubinskaya S, Hurtig M, Rueger D (2007) OP-1/BMP-7 in cartilage repair. Int Orthop 31:773–781. https://doi.org/10.1007/S00264-007-0423-9 PubMed DOI PMC
Coussens L, Tinkle C, Hanahan D, Werb Z (2000) MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103:481–490. https://doi.org/10.1016/S0092-8674(00)00139-2 PubMed DOI PMC
Cui D, Sun D, Wang X et al (2017) Impaired autophagosome clearance contributes to neuronal death in a piglet model of neonatal hypoxic-ischemic encephalopathy. Cell Death Dis 8:e2919. https://doi.org/10.1038/cddis.2017.318 PubMed DOI PMC
Cusack C, Swahari V, Hampton Henley W et al (2013) Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat Commun. https://doi.org/10.1038/NCOMMS2910 PubMed DOI
D’Lima D, Hermida J, Hashimoto S et al (2006) Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis Rheum 54:1814–1821. https://doi.org/10.1002/art.21874 PubMed DOI
Ehirchiou D, Bernabei I, Chobaz V et al (2020) CD11b signaling prevents chondrocyte mineralization and attenuates the severity of osteoarthritis. Front Cell Dev Biol. https://doi.org/10.3389/FCELL.2020.611757 PubMed DOI PMC
Engsig M, Chen Q, Vu T et al (2000) Matrix metalloproteinase 9 and vascular endothelial growth factor are essential for osteoclast recruitment into developing long bones. J Cell Biol 151:879–889. https://doi.org/10.1083/JCB.151.4.879 PubMed DOI PMC
Hakem R, Hakem A, Duncan G et al (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–352. https://doi.org/10.1016/S0092-8674(00)81477-4 PubMed DOI
Hatakeyama Y, Tuan R, Shum L (2004) Distinct functions of BMP4 and GDF5 in the regulation of chondrogenesis. J Cell Biochem 91:1204–1217. https://doi.org/10.1002/JCB.20019 PubMed DOI
Hayer S, Pundt N, Peters MA et al (2009) PI3Kγ regulates cartilage damage in chronic inflammatory arthritis. FASEB J 23:4288–4298. https://doi.org/10.1096/fj.09-135160 PubMed DOI
Hojo H, Ohba S, Taniguchi K et al (2013) Hedgehog-Gli activators direct osteo-chondrogenic function of bone morphogenetic protein toward osteogenesis in the perichondrium. J Biol Chem 288:9924–9932. https://doi.org/10.1074/JBC.M112.409342 PubMed DOI PMC
Huser C, Peacock M, Davies M (2006) Inhibition of caspase-9 reduces chondrocyte apoptosis and proteoglycan loss following mechanical trauma. Osteoarthr Cartil 14:1002–1010. https://doi.org/10.1016/J.JOCA.2006.03.012 DOI
Janečková E, Bíliková P, Matalová E (2018) Osteogenic potential of caspases related to endochondral ossification. J Histochem Cytochem 66:47–58. https://doi.org/10.1369/0022155417739283 PubMed DOI
Jing J, Hinton R, Jing Y et al (2014) Osterix couples chondrogenesis and osteogenesis in post-natal condylar growth. J Dent Res 93:1014–1021. https://doi.org/10.1177/0022034514549379 PubMed DOI PMC
Kolaczkowska E, Plytycz B, Arnold B et al (2009) Increased cyclooxygenase activity impairs apoptosis of inflammatory neutrophils in mice lacking gelatinase B/matrix metalloproteinase-9. Immunology. https://doi.org/10.1111/J.1365-2567.2008.02956.X PubMed DOI PMC
Kratochvílová A, Veselá B, Ledvina V et al (2020) Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells. Sci Rep. https://doi.org/10.1038/S41598-020-64294-9 PubMed DOI PMC
Kuida K, Haydar T, Kuan C et al (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337. https://doi.org/10.1016/S0092-8674(00)81476-2 PubMed DOI
Liu Q, Sheng W, Dong M et al (2015) Gli1 promotes transforming growth factor-beta1– and epidermal growth factor–induced epithelial to mesenchymal transition in pancreatic cancer cells. Surgery 158:211–224. https://doi.org/10.1016/J.SURG.2015.03.016 PubMed DOI
Madadi Z, Akbari-Birgani S, Monfared P, Mohammadi S (2019) The non-apoptotic role of caspase-9 promotes differentiation in leukemic cells. Biochim Biophys Acta Mol Cell Res. https://doi.org/10.1016/J.BBAMCR.2019.118524 PubMed DOI
Mannello F, Luchetti F, Falcieri E, Papa S (2005) Multiple roles of matrix metalloproteinases during apoptosis. Apoptosis 10:19–24. https://doi.org/10.1007/S10495-005-6058-7 PubMed DOI
Matalova E, Vanden Berghe T, Svandova E et al (2012) Caspase-7 in molar tooth development. Arch Oral Biol 57:1474–1481. https://doi.org/10.1016/J.ARCHORALBIO.2012.06.009 PubMed DOI
Matalova E, Lesot H, Svandova E et al (2013) Caspase-7 participates in differentiation of cells forming dental hard tissues. Dev Growth Differ 55:615–621. https://doi.org/10.1111/DGD.12066 PubMed DOI
Matsuo M, Nishida K, Yoshida A et al (2001) Expression of caspase-3 and -9 relevant to cartilage destruction and chondrocyte apoptosis in human osteoarthritic cartilage. Acta Med Okayama 55:333–340. https://doi.org/10.18926/AMO/32000 PubMed DOI
Mello M, Tuan R (1999) High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. In Vitro Cell Dev Biol Anim 35:262–269. https://doi.org/10.1007/S11626-999-0070-0 PubMed DOI
Miljkovic N, Cooper G, Marra K (2008) Chondrogenesis, bone morphogenetic protein-4 and mesenchymal stem cells. Osteoarthr Cartil 16:1121–1130. https://doi.org/10.1016/J.JOCA.2008.03.003 DOI
Miura M, Chen X, Allen M et al (2004) A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J Clin Invest 114:1704–1713. https://doi.org/10.1172/JCI20427 PubMed DOI PMC
Mogi M, Togari A (2003) Activation of caspases is required for osteoblastic differentiation. J Biol Chem 278:47477–47482. https://doi.org/10.1074/JBC.M307055200 PubMed DOI
Murray T, Howley B, Stanley A et al (2008) A non-apoptotic role for caspase-9 in muscle differentiation. J Cell Sci 121:3786–3793. https://doi.org/10.1242/JCS.024547 PubMed DOI
Ogata Y, Itoh Y, Nagase H (1995) Steps involved in activation of the pro-matrix metalloproteinase 9 (progelatinase B)-tissue inhibitor of metalloproteinases-1 complex by 4-aminophenylmercuric acetate and proteinases. J Biol Chem 270:18506–18511. https://doi.org/10.1074/JBC.270.31.18506 PubMed DOI
Ramesova A, Svandova E, Vesela B et al (2021a) Autophagy-related proteases accompany the transition of pre-chondrogenic cells into chondroblasts. Ann Anat. https://doi.org/10.1016/J.AANAT.2021.151781 PubMed DOI
Ramesova A, Vesela B, Svandova E et al (2021b) Caspase-1 inhibition impacts the formation of chondrogenic nodules, and the expression of markers related to osteogenic differentiation and lipid metabolism. Int J Mol Sci. https://doi.org/10.3390/ijms22179576 PubMed DOI PMC
Rose B, Kooyman D (2016) A tale of two joints: the role of matrix metalloproteases in cartilage biology. Dis Markers. https://doi.org/10.1155/2016/4895050 PubMed DOI PMC
Sakano S, Murata Y, Miura T et al (1993) Collagen and alkaline phosphatase gene expression during bone morphogenetic protein (BMP)-induced cartilage and bone differentiation. Clin Orthop Relat Res 292:337–344 DOI
Schenk R, Spiro D, Wiener J (1967) Cartilage resorption in the tibial epiphyseal plate of growing rats. J Cell Biol 34:275–291. https://doi.org/10.1083/JCB.34.1.275 PubMed DOI PMC
Shalini S, Dorstyn L, Dawar S, Kumar S (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539. https://doi.org/10.1038/cdd.2014.216 PubMed DOI
Shi Y (2004) Caspase activation, inhibition, and reactivation: a mechanistic view. Protein Sci 13:1979–1987. https://doi.org/10.1110/ps.04789804 PubMed DOI PMC
Shi S, Mercer S, Eckert G, Trippel S (2012) Regulation of articular chondrocyte aggrecan and collagen gene expression by multiple growth factor gene transfer. J Orthop Res 30:1026–1031. https://doi.org/10.1002/JOR.22036 PubMed DOI
Shum L, Wang X, Kane A, Nuckolls G (2003) BMP4 promotes chondrocyte proliferation and hypertrophy in the endochondral cranial base. Int J Dev Biol 47:423–431 PubMed
Sladky V, Villunger A (2020) Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 27:2037–2047. https://doi.org/10.1038/S41418-020-0556-6 PubMed DOI PMC
Stamenkovic I (2000) Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol 10:415–433. https://doi.org/10.1006/SCBI.2000.0379 PubMed DOI
Su TT (2020) Non-apoptotic roles of apoptotic proteases: new tricks for an old dog. Open Biol 10(8):200130. https://doi.org/10.1098/rsob.200130
Svandova E, Lesot H, Vanden Berghe T et al (2014) Non-apoptotic functions of caspase-7 during osteogenesis. Cell Death Dis 5:e1366. https://doi.org/10.1038/cddis.2014.330 PubMed DOI PMC
Svandova E, Vesela B, Tucker AS, Matalova E (2018) Activation of pro-apoptotic caspases in non-apoptotic cells during odontogenesis and related osteogenesis. Front Physiol 9:174. https://doi.org/10.3389/fphys.2018.00174 PubMed DOI PMC
Szymczyk K, Freeman T, Adams C et al (2006) Active caspase-3 is required for osteoclast differentiation. J Cell Physiol 209:836–844. https://doi.org/10.1002/JCP.20770 PubMed DOI
Thant AA, Nawa A, Kikkawa F et al (2000) Fibronectin activates matrix metalloproteinase-9 secretion via the MEK1-MAPK and the PI3K-Akt pathways in ovarian cancer cells. Clin Exp Metastasis 185(18):423–428. https://doi.org/10.1023/A:1010921730952 DOI
Tominaga H, Maeda S, Miyoshi H et al (2009) Expression of osterix inhibits bone morphogenetic protein-induced chondrogenic differentiation of mesenchymal progenitor cells. J Bone Miner Metab 27:36–45. https://doi.org/10.1007/S00774-008-0003-0 PubMed DOI
Tong Y, Yu Z, Chen Z et al (2021) The HIV protease inhibitor Saquinavir attenuates sepsis-induced acute lung injury and promotes M2 macrophage polarization via targeting matrix metalloproteinase-9. Cell Death Dis 12:67. https://doi.org/10.1038/s41419-020-03320-0 PubMed DOI PMC
Underhill T, Dranse H, Hoffman L (2014) Analysis of chondrogenesis using micromass cultures of limb mesenchyme. Methods Mol Biol 1130:251–265. https://doi.org/10.1007/978-1-62703-989-5_19 PubMed DOI
Vesela B, Svandova E, Ramesova A et al (2020) Caspase inhibition affects the expression of autophagy-related molecules in chondrocytes. Cartilage. https://doi.org/10.1177/1947603520938444 PubMed DOI
Vesela B, Zapletalova M, Svandova E et al (2021) General caspase inhibition in primary chondrogenic cultures impacts their transcription profile including osteoarthritis-related factors. Cartilage. https://doi.org/10.1177/19476035211044823 PubMed DOI
Vu T, Shipley J, Bergers G et al (1998) MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422. https://doi.org/10.1016/S0092-8674(00)81169-1 PubMed DOI PMC
Wessely A, Waltera A, Reichert T et al (2019) Induction of ALP and MMP9 activity facilitates invasive behavior in heterogeneous human BMSC and HNSCC 3D spheroids. FASEB J 33:11884–11893. https://doi.org/10.1096/FJ.201900925R PubMed DOI PMC
Yang X, Chen D, He B, Cheng W (2021) NRP1 and MMP9 are dual targets of RNA-binding protein QKI5 to alter VEGF-R/ NRP1 signalling in trophoblasts in preeclampsia. J Cell Mol Med 25:5655–5670. https://doi.org/10.1111/jcmm.16580 PubMed DOI PMC