General Caspase Inhibition in Primary Chondrogenic Cultures Impacts Their Transcription Profile Including Osteoarthritis-Related Factors

. 2021 Dec ; 13 (2_suppl) : 1144S-1154S. [epub] 20210908

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34496641

OBJECTIVE: The knowledge about functions of caspases, usually associated with cell death and inflammation, keeps expanding also regarding cartilage. Active caspases are present in the growth plate, and caspase inhibition in limb-derived chondroblasts altered the expression of osteogenesis-related genes. Caspase inhibitors were reported to reduce the severity of cartilage lesions in osteoarthritis (OA), and caspase-3 might represent a promising biomarker for OA prognosis. The objective of this investigation was to decipher the transcriptomic regulation of caspase inhibition in chondrogenic cells. DESIGN: Limb-derived chondroblasts were cultured in the presence of 2 different inhibitors: Z-VAD-FMK (FMK) and Q-VD-OPH (OPH). A whole transcriptome RNA sequencing was performed as the key analysis. RESULTS: The analysis revealed a statistically significant increase in the expression of 252 genes in the FMK samples and 163 genes in the OPH samples compared with controls. Conversely, there was a significant decrease in the expression of 290 genes in the FMK group and 188 in the OPH group. Among the top up- and downregulated genes (more than 10 times changed), almost half of them were associated with OA. Both inhibitors displayed the highest upregulation of the inflammatory chemokine Ccl5, the most downregulated gene was the one for mannose receptors Mrc1. CONCLUSIONS: The obtained datasets pointed to a significant impact of caspase inhibition on the expression of several chondro-/osteogenesis-related markers in an in vitro model of endochondral ossification. Notably, the list of these genes included some encoding for factors associated with cartilage/bone pathologies such as OA.

Zobrazit více v PubMed

Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 2015;22(4):526-39. doi:10.1038/cdd.2014.216 PubMed DOI PMC

Thomas CM, Fuller CJ, Whittles CE, Sharif M. Chondrocyte death by apoptosis is associated with cartilage matrix degradation. Osteoarthritis Cartilage. 2007;15(1):27-34. doi:10.1016/j.joca.2006.06.012 PubMed DOI

Hwang H, Kim H. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int J Mol Sci. 2015;16(11):26035-54. doi:10.3390/ijms161125943 PubMed DOI PMC

An S, Hu H, Li Y, Hu Y. Pyroptosis plays a role in osteoarthritis. Aging Dis. 2020;11(5):1146-57. doi:10.14336/AD.2019.1127 PubMed DOI PMC

Musumeci G, Castrogiovanni P, Trovato F, Weinberg AM, Al-Wasiyah MK, Alqahtani MH, et al.. Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. Int J Mol Sci. 2015;16(9):20560-75. doi:10.3390/ijms160920560 PubMed DOI PMC

Kudelova J, Fleischmannova J, Adamova E, Matalova E. Pharmacological caspase inhibitors: research towards therapeutic perspectives. J Physiol Pharmacol. 2015;66(4):473-82. doi:10.1179/tex.1992.23.1.97 PubMed DOI

Chauvier D, Ankri S, Charriaut-Marlangue C, Casimir R, Jacotot E. Broad-spectrum caspase inhibitors: from myth to reality? Cell Death Differ. 2007;14(2_suppl):387-91. doi:10.1038/sj.cdd.4402044 PubMed DOI

Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL. Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis. 2003;8(4):345-52. doi:10.1023/A:1024116916932 PubMed DOI

Van Noorden CJF. The history of Z-VAD-FMK, a tool for understanding the significance of caspase inhibition. Acta Histochem. 2001;103(3):241-51. doi:10.1078/0065-1281-00601 PubMed DOI

D’Lima D, Hermida J, Hashimoto S, Colwell C, Lotz M. Caspase inhibitors reduce severity of cartilage lesions in experimental osteoarthritis. Arthritis Rheum. 2006;54(6):1814-21. doi:10.1002/art.21874 PubMed DOI

Dang AC, Warren AP, Kim HT. Beneficial effects of intra-articular caspase inhibition therapy following osteochondral injury. Osteoarthritis Cartilage. 2006;14(6):526-32. doi:10.1016/j.joca.2005.12.010 PubMed DOI

Otsuki S, Brinson DC, Creighton L, Kinoshita M, Sah RL, D’Lima D, et al.. The effect of glycosaminoglycan loss on chondrocyte viability: a study on porcine cartilage explants. Arthritis Rheum. 2008;58(4):1076-85. doi:10.1002/art.23381 PubMed DOI

Morimoto R, Obinata A. Overexpression of hematopoietically expressed homeoprotein induces nonapoptotic cell death in mouse prechondrogenic ATDC5 cells. Biol Pharm Bull. 2011;34(10):1589-95. doi:10.1248/bpb.34.1589 PubMed DOI

Maeda T, Toyoda F, Imai S, Tanigawa H, Kumagai K, Matsuura H, et al.. Lidocaine induces ROCK-dependent membrane blebbing and subsequent cell death in rabbit articular chondrocytes. J Orthop Res. 2016;34(5):754-62. doi:10.1002/jor.23092 PubMed DOI

Zhou S, Xie Y, Li W, Huang J, Wang Z, Tang J, et al.. Conditional deletion of Fgfr3 in chondrocytes leads to osteoarthritis-like defects in temporomandibular joint of adult mice. Sci Rep. 2016;6(1):24039. doi:10.1038/srep24039 PubMed DOI PMC

Mohanraj B, Meloni GR, Mauck RL, Dodge GR. A high-throughput model of post-traumatic osteoarthritis using engineered cartilage tissue analogs. Osteoarthritis Cartilage. 2014;22(9):1282-90. doi:10.1016/j.joca.2014.06.032 PubMed DOI PMC

Janečková E, Bíliková P, Matalová E. Osteogenic potential of caspases related to endochondral ossification. J Histochem Cytochem. 2018;66(1):47-58. doi:10.1369/0022155417739283 PubMed DOI PMC

Vesela B, Svandova E, Ramesova A, Kratochvilova A, Tucker AS, Matalova E. Caspase inhibition affects the expression of autophagy-related molecules in chondrocytes. Cartilage. Epub 2020 Jul 4. doi:10.1177/1947603520938444 PubMed DOI PMC

Stolberg-Stolberg J, Sambale M, Hansen U, Raschke ASM, Bertrand J, Pap T, et al.. Cartilage trauma induces necroptotic chondrocyte death and expulsion of cellular contents. Int J Mol Sci. 2020;21(12):4204. doi:10.3390/ijms21124204 PubMed DOI PMC

Wingett SW, Andrews S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338. doi:10.12688/f1000research.15931.2 PubMed DOI PMC

Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184-5. doi:10.1093/bioinformatics/bts356 PubMed DOI

Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32(19):3047-8. doi:10.1093/bioinformatics/btw354 PubMed DOI PMC

Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17(1):10-2. doi:10.14806/ej.17.1.200 DOI

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al.. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. doi:10.1093/bioinformatics/bts635 PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8 PubMed DOI PMC

Motenko H, Neuhauser SB, O’Keefe M, Richardson JE. MouseMine: a new data warehouse for MGI. Mamm Genome. 2015;26(7-8):325-30. doi:10.1007/s00335-015-9573-z PubMed DOI PMC

Jassal B, Matthews L, Viteri G, Gong C, Lorente P, Fabergat A, et al.. The reactome pathway knowledgebase. Nucleic Acids Res. 2019;48(D1):D498-D503. doi:10.1093/nar/gkz1031 PubMed DOI PMC

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504. doi:10.1101/gr.1239303 PubMed DOI PMC

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091-3. doi:10.1093/bioinformatics/btp101 PubMed DOI PMC

Bindea G, Galon J, Mlecnik B. CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics. 2013;29(5):661-3. doi:10.1093/bioinformatics/btt019 PubMed DOI PMC

Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, et al.. AgriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017;45(W1):W122-W129. doi:10.1093/nar/gkx382 PubMed DOI PMC

Mello MA, Tuan RS. High density micromass cultures of embryonic limb bud mesenchymal cells: an in vitro model of endochondral skeletal development. Vitr Cell Dev Biol Anim. 1999;35(5):262-9. doi:10.1007/s11626-999-0070-0 PubMed DOI

Butterfield NC, Qian C, Logan MPO. Pitx1 determines characteristic hindlimb morphologies in cartilage micromass culture. PLoS One. 2017;12(7):e0180453. doi:10.1371/journal.pone.0180453 PubMed DOI PMC

Yoshida S, Arakawa F, Higuchi F, Ishibashi Y, Goto M, Sugita Y, et al.. Gene expression analysis of rheumatoid arthritis synovial lining regions by cDNA microarray combined with laser microdissection: up-regulation of inflammation-associated STAT1, IRF1, CXCL9, CXCL10, and CCL5. Scand J Rheumatol. 2012;41(3):170-9. doi:10.3109/03009742.2011.623137 PubMed DOI PMC

Agere SA, Akhtar N, Watson JM, Ahmed S. RANTES/CCL5 induces collagen degradation by activating MMP-1 and MMP-13 expression in human rheumatoid arthritis synovial fibroblasts. Front Immunol. 2017;8:1341. doi:10.3389/fimmu.2017.01341 PubMed DOI PMC

Haringman JJ, Smeets TJM, Reinders-Blankert P, Tak PP. Chemokine and chemokine receptor expression in paired peripheral blood mononuclear cells and synovial tissue of patients with rheumatoid arthritis, osteoarthritis, and reactive arthritis. Ann Rheum Dis. 2006;65(3):294-300. doi:10.1136/ard.2005.037176 PubMed DOI PMC

Gao Z, Liu Z, Wang R, Zheng Y, Li H, Yang L. Galectin-3 is a potential mediator for atherosclerosis. J Immunol Res. 2020;2020:5284728. doi:10.1155/2020/5284728 PubMed DOI PMC

Tang CH, Hsu CJ, Fong YC. The CCL5/CCR5 axis promotes interleukin-6 production in human synovial fibroblasts. Arthritis Rheum. 2010;62(12):3615-24. doi:10.1002/art.27755 PubMed DOI

Raghu H, Lepus CM, Wang Q, Wong HH, Lingampalli N, Oliviero F, et al.. CCL2/CCR2, but not CCL5/CCR5, mediates monocyte recruitment, inflammation and cartilage destruction in osteoarthritis. Ann Rheum Dis. 2017;76(5):914-22. doi:10.1136/annrheumdis-2016-210426 PubMed DOI PMC

Akeson G, Malemud CJ. A role for soluble IL-6 receptor in osteoarthritis. J Funct Morphol Kinesiol. 2017;2(3):27. doi:10.3390/jfmk2030027 PubMed DOI PMC

Guan J, Li Y, Ding LB, Liu GY, Zheng XF, Xue W, et al.. Relationship between serum and synovial fluid CCL20 concentrations with disease severity in primary knee osteoarthritis. J Musculoskelet Neuronal Interact. 2019;19(3):326-32. PubMed PMC

Snelling S, Rout R, Davidson R, Clark I, Carr A, Hulley PA, et al.. A gene expression study of normal and damaged cartilage in anteromedial gonarthrosis, a phenotype of osteoarthritis. Osteoarthritis Cartilage. 2014;22(2_suppl):334-43. doi:10.1016/j.joca.2013.12.009 PubMed DOI PMC

Zhang G, Gu M, Xu Y, Wu Z. A comprehensive analysis on the effects of 1,25(OH)2D3 on primary chondrocytes cultured from patients with osteoarthritis. Gene. 2020;730:144322. doi:10.1016/j.gene.2019.144322 PubMed DOI

Ning S, Pagano JS, Barber GN. IRF7: activation, regulation, modification and function. Genes Immun. 2011;12(6):399-414. doi:10.1038/gene.2011.21 PubMed DOI PMC

Antonczyk A, Krist B, Sajek M, Michalska A, Piaszyk-Borychoswska A, Plens-Galaska M, et al.. Direct inhibition of IRF-dependent transcriptional regulatory mechanisms associated with disease. Front Immunol. 2019;10:1176. doi:10.3389/fimmu.2019.01176 PubMed DOI PMC

Sweeney SE, Kimbler TB, Firestein GS. Synoviocyte innate immune responses: II. Pivotal role of IFN regulatory factor 3. J Immunol. 2010;184(12):7162-8. doi:10.4049/jimmunol.0903944 PubMed DOI PMC

Shi T, Shen X, Gao G. Gene expression profiles of peripheral blood monocytes in osteoarthritis and analysis of differentially expressed genes. Biomed Res Int. 2019;2019:4291689. doi:10.1155/2019/4291689 PubMed DOI PMC

Martinez-Pomares L, Wienke D, Stillion R, McKenzie EJ, Arnold JN, Harris J, et al.. Carbohydrate-independent recognition of collagens by the macrophage mannose receptor. Eur J Immunol. 2006;36(5):1074-82. doi:10.1002/eji.200535685 PubMed DOI

Fernandes TL, Gomoll AH, Lattermann C, Hernandez AJ, Bueno DF, Amano MT. Macrophage: a potential target on cartilage regeneration. Front Immunol. 2020;11:111. doi:10.3389/fimmu.2020.00111 PubMed DOI PMC

Ramos YFM, Metrustry S, Arden N, Bay-Jensen AC, Beekman M, de Crean AJM, et al.. Meta-analysis identifies loci affecting levels of the potential osteoarthritis biomarkers sCOMP and uCTX-II with genome wide significance. J Med Genet. 2014;51(9):596-604. doi:10.1136/jmedgenet-2014-102478 PubMed DOI

Mahon OR, Kelly DJ, McCarthy GM, Dunne A. Osteoarthritis-associated basic calcium phosphate crystals alter immune cell metabolism and promote M1 macrophage polarization. Osteoarthritis Cartilage. 2020;28(5):603-12. doi:10.1016/j.joca.2019.10.010 PubMed DOI

Alvarez-Garcia O, Fisch KM, Wineinger NE, Akagi R, Saito M, Sasho T, et al.. Increased DNA methylation and reduced expression of transcription factors in human osteoarthritis cartilage. Arthritis Rheumatol. 2016;68(8):1876-86. doi:10.1002/art.39643 PubMed DOI PMC

Fernández-Tajes J, Soto-Hermida A, Vázquez-Mosquera ME, Cortés-Pereira E, Mosquera A, Fernández-Moreno M, et al.. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann Rheum Dis. 2014;73(4):668-77. doi:10.1136/annrheumdis-2012-202783 PubMed DOI

Rai MF, Sandell LJ, Barrack TN, Cai L, Tycksen ED, Tang SY, et al.. A microarray study of articular cartilage in relation to obesity and severity of knee osteoarthritis. Cartilage. 2020;11(4):458-72. doi:10.1177/1947603518796122 PubMed DOI PMC

Fahrenhold M, Rakic S, Classey J, Brayne C, Ince PG, Nicoll JAR, et al.. TREM2 expression in the human brain: a marker of monocyte recruitment? Brain Pathol. 2018;28(5):595-602. doi:10.1111/bpa.12564 PubMed DOI PMC

Garcia S, Hartkamp LM, Malvar-Fernandez B, van Es IE, Lin H, Wong J, et al.. Colony-stimulating factor (CSF) 1 receptor blockade reduces inflammation in human and murine models of rheumatoid arthritis. Arthritis Res Ther. 2016;18(1):75. doi:10.1186/s13075-016-0973-6 PubMed DOI PMC

Holmgaard RB, Zamarin D, Lesokhin A, Merghoub T, Wolchok JD. Targeting myeloid-derived suppressor cells with colony stimulating factor-1 receptor blockade can reverse immune resistance to immunotherapy in indoleamine 2,3-dioxygenase-expressing tumors. EBioMedicine. 2016;6:50-8. doi:10.1016/j.ebiom.2016.02.024 PubMed DOI PMC

Hamilton JA, Tak PP. The dynamics of macrophage lineage populations in inflammatory and autoimmune diseases. Arthritis Rheum. 2009;60(5):1210-21. doi:10.1002/art.24505 PubMed DOI

Lipari L, Gerbino A. Expression of gelatinases (MMP-2, MMP-9) in human articular cartilage. Int J Immunopathol Pharmacol. 2013;26(3):817-23. doi:10.1177/039463201302600331 PubMed DOI

Chen C, Xu G, Sun Y, Cui Z. Transcriptome sequencing reveals dynamic changes in matrix metalloproteinases in facet joint osteoarthritis. Exp Ther Med. 2020:2475-82. doi:10.3892/etm.2020.8488 PubMed DOI PMC

Tian F, Wang J, Zhang Z, Yang J. MiR-107 modulates chondrocyte proliferation, apoptosis, and extracellular matrix synthesis by targeting PTEN. Int J Clin Exp Pathol. 2019;12(2_suppl):488-97. PubMed PMC

Woodell-May JE, Sommerfeld SD. Role of Inflammation and the immune system in the progression of osteoarthritis. J Orthop Res. 2020;38(2_suppl):253-7. doi:10.1002/jor.24457 PubMed DOI

Yap HY, Tee S, Wong M, Chow SK, Peh SC, Teow SY. Pathogenic role of immune cells in rheumatoid arthritis: implications in clinical treatment and biomarker development. Cells. 2018;7(10):161. doi:10.3390/cells7100161 PubMed DOI PMC

Page CE, Smale S, Carty SM, Amos N, Lauder SN, Goodfellow RM, et al.. Interferon-γ inhibits interleukin-1β-induced matrix metalloproteinase production by synovial fibroblasts and protects articular cartilage in early arthritis. Arthritis Res Ther. 2010;12(2_suppl):R49. doi:10.1186/ar2960 PubMed DOI PMC

Verbruggen G, Malfait AM, Veys EM, Gyselbrecht L, Lambert J, Almqvist KF. Influence of interferon-gamma on isolated chondrocytes from human articular cartilage. Dose dependent inhibition of cell proliferation and proteoglycan synthesis. J Rheumatol. 1993;20(6):1020-6. PubMed

Osiecka-Iwan A, Hyc A, Radomska-Lesniewska DM, Rymarczyk A, Skopinski P. Antigenic and immunogenic properties of chondrocytes. Implications for chondrocyte therapeutic transplantation and pathogenesis of inflammatory and degenerative joint diseases. Cent Eur J Immunol. 2018; 43(2_suppl):209-19. doi:10.5114/ceji.2018.77392 PubMed DOI PMC

Sondergaard BC, Schultz N, Madsen SH, Bay-Jensen AC, Kassem M, Karsdal MA. MAPKs are essential upstream signaling pathways in proteolytic cartilage degradation—divergence in pathways leading to aggrecanase and MMP-mediated articular cartilage degradation. Osteoarthritis Cartilage. 2010;18(3):279-88. doi:10.1016/j.joca.2009.11.005 PubMed DOI

Ishikawa J, Okada Y, Bird IN, Jasani B, Spragg JH, Yamada T. Use of anti-platelet-endothelial cell adhesion molecule-1 antibody in the control of disease progression in established collagen-induced arthritis in DBA/1J mice. Jpn J Pharmacol. 2002;88(3):332-40. doi:10.1254/jjp.88.332 PubMed DOI

Bastow ER, Last K, Golub S, Stow JL, Stanley AC, Fosang AJ. Evidence for lysosomal exocytosis and release of aggrecan-degrading hydrolases from hypertrophic chondrocytes, in vitro and in vivo. Biol Open. 2012;1(4):318-28. doi:10.1242/bio.2012547 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis

. 2022 Apr ; 157 (4) : 403-413. [epub] 20220109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...