Identification of the phase composition of solid microparticles in the nasal mucosa of patients with chronic hypertrophic rhinitis using Raman microspectroscopy

. 2021 Sep 23 ; 11 (1) : 18989. [epub] 20210923

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34556770
Odkazy

PubMed 34556770
PubMed Central PMC8460631
DOI 10.1038/s41598-021-98521-8
PII: 10.1038/s41598-021-98521-8
Knihovny.cz E-zdroje

Solid particles, predominantly in micron and submicron sizes, have repeatedly been observed as a threat to a human health unique compared to the other textures of the same materials. In this work, the hypothesis the solid metal-based particles play a role in the pathogenesis of chronic hypertrophic rhinitis was investigated in patients who had not responded positively to medication. In the group of 40 randomly selected patients indicated for surgical mucotomy, the presence of solid micro- and submicron particles present in their nasal mucosa was assessed. For comparison, a set of 13 reference samples from patients without diagnosed chronic hypertrophic rhinitis was evaluated. The analysis was performed using Raman microspectroscopy. The advantage of this method is the direct identification of compounds. The main detected compounds in the mucosa samples of patients with chronic hypertrophic rhinitis were TiO2, carbon-based compounds, CaCO3, Ca(Fe, Mg, Mn)(CO3)2 MgCO3, Fe2O3, BaSO4, FeCO3 and compounds of Al and Si, all of which may pose a health risk to a living organism. In the reference samples, only TiO2 and amorphous carbon were found. In the control group mucosa, a significantly lower presence of most of the assessed compounds was found despite the longer time they had to accumulate them due to their higher mean age. Identification and characterisation of such chemicals compounds in a living organism could contribute to the overall picture of the health of the individual and lead to a better understanding of the possible causes not only in the chronic hypertrophic rhinitis, but also in other mucosal and idiopathic diseases.

Zobrazit více v PubMed

Turner MC, et al. Ambient air pollution and cancer mortality in the cancer prevention study II. Environ. Health Perspect. 2017;125:087013. doi: 10.1289/EHP1249. PubMed DOI PMC

Bhopal A, Peake MD, Gilligan D, Cosford P. Lung cancer in never-smokers: A hidden disease. J. R. Soc. Med. 2019;112:269–271. doi: 10.1177/0141076819843654. PubMed DOI PMC

Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 2010;7:2. doi: 10.1186/1743-8977-7-2. PubMed DOI PMC

Maher BA, Ahmed IAM, Davison B, Karloukovski V, Clarke R. Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter. Environ. Sci. Technol. 2013;47:13737–13744. doi: 10.1021/es404363m. PubMed DOI

Kelly FJ, Burney P. Long-term Exposure to Air Pollution and Chronic Bronchitis. Public Health England for the Committee on the Medical Effects of Air Pollutants; 2016.

Lucchini RG, Dorman DC, Elder A, Veronesi B. Neurological impacts from inhalation of pollutants and the nose–brain connection. Neurotoxicology. 2012;33:838–841. doi: 10.1016/j.neuro.2011.12.001. PubMed DOI PMC

Oberdörster G, et al. Principles for scharacterising the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2005;2:1–35. doi: 10.1186/1743-8977-2-8. PubMed DOI PMC

Kreyling WG, Semmler-Behnke M, Möller W. Health implications of nanoparticles. J. Nanopart. Res. 2006;8:543–562. doi: 10.1007/s11051-005-9068-z. DOI

Holgate ST. Exposure, uptake, distribution and toxicity of nanomaterials in humans. J. Biomed. Nanotechnol. 2010;6:1–19. doi: 10.1166/jbn.2010.1098. PubMed DOI

Fokkens WJ, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinol. J. 2020;58:1–481. doi: 10.4193/Rhin20.401. PubMed DOI

Kennedy DW. Master Techniques in Otolaryngology-Head and Neck Surgery: Rhinology. Lippincott Williams & Wilkins; 2015.

Tardy ME, Kastenbauer ER, Naumann H-H. Head and Neck Surgery. Thieme Publishing Group; 1995.

Rotiroti G, Scadding GK. Allergic rhinitis—An overview of a common disease. Paediatr. Child Health. 2016;26:298–303. doi: 10.1016/j.paed.2016.03.006. DOI

Čábalová L, et al. Micro- and nanosized particles in nasal mucosa: A pilot study. Biomed. Res. Int. 2015;2015:1–6. doi: 10.1155/2015/505986. PubMed DOI PMC

Čabanová K, et al. Raman microspectroscopy as a useful tool for nanopathology. J. Raman Spectrosc. 2017;48:357–362. doi: 10.1002/jrs.5045. DOI

Salkind NJ. Encyclopedia of Measurement and Statistics. SAGE Publications; 2007.

R: A language and environment for statistical computing. The R Project for Statistical Computing. https://www.R-project.org/ (2018). Accessed 18 Mar 2021.

Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008 doi: 10.18637/jss.v025.i01. DOI

Deepak FL. Metal Nanoparticles and Clusters: Advances in Synthesis, Properties and Applications. Springer; 2018.

Xu L, Liang H-W, Yang Y, Yu S-H. Stability and reactivity: Positive and negative aspects for nanoparticle processing. Chem. Rev. 2018;118:3209–3250. doi: 10.1021/acs.chemrev.7b00208. PubMed DOI

Sovinová H, Csémy L. Užívání tabáku v České republice 2015: Výzkumná zpráva: Tobacco use in the Czech Republic 2015: Research report. Státní zdravotní ústav. 2016;1:21.

Statistical yearbook of the Czech Republic. in Czech Statistical Office vol. 2017 824 (Český spisovatel: Praha, 2017).

Sillanpää M, et al. Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki. Sci. Total Environ. 2005;350:119–135. doi: 10.1016/j.scitotenv.2005.01.024. PubMed DOI

Tomonaga T, et al. Assessment of pulmonary toxicity induced by inhaled toner with external additives. Biomed. Res. Int. 2017;2017:1–12. doi: 10.1155/2017/4245309. PubMed DOI PMC

Kukutschová J, et al. Wear performance and wear debris of semimetallic automotive brake materials. Wear. 2010;268:86–93. doi: 10.1016/j.wear.2009.06.039. DOI

Figarol A, et al. In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalisation. Toxicol. In Vitro. 2015;30:476–485. doi: 10.1016/j.tiv.2015.09.014. PubMed DOI

Lindberg HK, et al. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol. Lett. 2009;186:166–173. doi: 10.1016/j.toxlet.2008.11.019. PubMed DOI

Occupational Health Guidelines for Chemical Hazards. Centers for Disease Control and Prevention. https://www.cdc.gov/niosh/docs/81-123/default.html. (1995). Accessed 18 Mar 2021.

Chen T, Yan J, Li Y. Genotoxicity of titanium dioxide nanoparticles. J. Food Drug Anal. 2014;22:95–104. doi: 10.1016/j.jfda.2014.01.008. PubMed DOI PMC

Lehto S, et al. Comparison of food colour regulations in the EU and the US: A review of current provisions. Food Addit. Contam. A. 2017;34:335–355. doi: 10.1080/19440049.2016.1274431. PubMed DOI

Periasamy VS, et al. Identification of titanium dioxide nanoparticles in food products: Induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells. Environ. Toxicol. Pharmacol. 2015;39:176–186. doi: 10.1016/j.etap.2014.11.021. PubMed DOI

Skocaj M, Filipic M, Petkovic J, Novak S. Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 2011 doi: 10.2478/v10019-011-0037-0. PubMed DOI PMC

Jovanović B, et al. The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster—A 20 generation dietary exposure experiment. Sci. Rep. 2018 doi: 10.1038/s41598-018-36174-w. PubMed DOI PMC

Pinget G, et al. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction. Front. Nutr. 2019 doi: 10.3389/fnut.2019.00100. PubMed DOI PMC

Pelclova D, et al. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO 2 particles: A cross-sectional study. J. Breath Res. 2015;9:036008. doi: 10.1088/1752-7155/9/3/036008. PubMed DOI

IARC monographs on the identification of carcinogenic hazards to humans donate now. International Agency for Reasearch of Cancer. https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (2021). Accessed 18 Mar 2021.

Baranowska-Wolnicka, A. & Zięba, H. R. Holistic therapy of disorders of cognition functions in schizophrenia. In NeuroRehab 2019: IX. Medzinárodný neurorehabilitačný kongres, 17–18 (2019).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...