Identification of the phase composition of solid microparticles in the nasal mucosa of patients with chronic hypertrophic rhinitis using Raman microspectroscopy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, pozorovací studie, práce podpořená grantem
PubMed
34556770
PubMed Central
PMC8460631
DOI
10.1038/s41598-021-98521-8
PII: 10.1038/s41598-021-98521-8
Knihovny.cz E-zdroje
- MeSH
- chronická nemoc MeSH
- dospělí MeSH
- endoskopie MeSH
- hypertrofie etiologie patologie chirurgie MeSH
- látky znečišťující vzduch škodlivé účinky chemie izolace a purifikace MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- nosní sliznice patologie chirurgie MeSH
- prospektivní studie MeSH
- rýma etiologie patologie chirurgie MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- velikost částic MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- látky znečišťující vzduch MeSH
Solid particles, predominantly in micron and submicron sizes, have repeatedly been observed as a threat to a human health unique compared to the other textures of the same materials. In this work, the hypothesis the solid metal-based particles play a role in the pathogenesis of chronic hypertrophic rhinitis was investigated in patients who had not responded positively to medication. In the group of 40 randomly selected patients indicated for surgical mucotomy, the presence of solid micro- and submicron particles present in their nasal mucosa was assessed. For comparison, a set of 13 reference samples from patients without diagnosed chronic hypertrophic rhinitis was evaluated. The analysis was performed using Raman microspectroscopy. The advantage of this method is the direct identification of compounds. The main detected compounds in the mucosa samples of patients with chronic hypertrophic rhinitis were TiO2, carbon-based compounds, CaCO3, Ca(Fe, Mg, Mn)(CO3)2 MgCO3, Fe2O3, BaSO4, FeCO3 and compounds of Al and Si, all of which may pose a health risk to a living organism. In the reference samples, only TiO2 and amorphous carbon were found. In the control group mucosa, a significantly lower presence of most of the assessed compounds was found despite the longer time they had to accumulate them due to their higher mean age. Identification and characterisation of such chemicals compounds in a living organism could contribute to the overall picture of the health of the individual and lead to a better understanding of the possible causes not only in the chronic hypertrophic rhinitis, but also in other mucosal and idiopathic diseases.
Department of Otorhinolaryngology University Hospital Ostrava Ostrava Czech Republic
Faculty of Mining and Geology VŠB Technical University of Ostrava Ostrava Czech Republic
Institute of Forensic Medicine University Hospital Ostrava Ostrava Czech Republic
Institute of Pathology University Hospital Ostrava Ostrava Czech Republic
MEDIN a s Nové Město na Moravě Czech Republic
Nanotechnology Centre CEET VŠB Technical University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Turner MC, et al. Ambient air pollution and cancer mortality in the cancer prevention study II. Environ. Health Perspect. 2017;125:087013. doi: 10.1289/EHP1249. PubMed DOI PMC
Bhopal A, Peake MD, Gilligan D, Cosford P. Lung cancer in never-smokers: A hidden disease. J. R. Soc. Med. 2019;112:269–271. doi: 10.1177/0141076819843654. PubMed DOI PMC
Geiser M, Kreyling WG. Deposition and biokinetics of inhaled nanoparticles. Part. Fibre Toxicol. 2010;7:2. doi: 10.1186/1743-8977-7-2. PubMed DOI PMC
Maher BA, Ahmed IAM, Davison B, Karloukovski V, Clarke R. Impact of roadside tree lines on indoor concentrations of traffic-derived particulate matter. Environ. Sci. Technol. 2013;47:13737–13744. doi: 10.1021/es404363m. PubMed DOI
Kelly FJ, Burney P. Long-term Exposure to Air Pollution and Chronic Bronchitis. Public Health England for the Committee on the Medical Effects of Air Pollutants; 2016.
Lucchini RG, Dorman DC, Elder A, Veronesi B. Neurological impacts from inhalation of pollutants and the nose–brain connection. Neurotoxicology. 2012;33:838–841. doi: 10.1016/j.neuro.2011.12.001. PubMed DOI PMC
Oberdörster G, et al. Principles for scharacterising the potential human health effects from exposure to nanomaterials: Elements of a screening strategy. Part. Fibre Toxicol. 2005;2:1–35. doi: 10.1186/1743-8977-2-8. PubMed DOI PMC
Kreyling WG, Semmler-Behnke M, Möller W. Health implications of nanoparticles. J. Nanopart. Res. 2006;8:543–562. doi: 10.1007/s11051-005-9068-z. DOI
Holgate ST. Exposure, uptake, distribution and toxicity of nanomaterials in humans. J. Biomed. Nanotechnol. 2010;6:1–19. doi: 10.1166/jbn.2010.1098. PubMed DOI
Fokkens WJ, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinol. J. 2020;58:1–481. doi: 10.4193/Rhin20.401. PubMed DOI
Kennedy DW. Master Techniques in Otolaryngology-Head and Neck Surgery: Rhinology. Lippincott Williams & Wilkins; 2015.
Tardy ME, Kastenbauer ER, Naumann H-H. Head and Neck Surgery. Thieme Publishing Group; 1995.
Rotiroti G, Scadding GK. Allergic rhinitis—An overview of a common disease. Paediatr. Child Health. 2016;26:298–303. doi: 10.1016/j.paed.2016.03.006. DOI
Čábalová L, et al. Micro- and nanosized particles in nasal mucosa: A pilot study. Biomed. Res. Int. 2015;2015:1–6. doi: 10.1155/2015/505986. PubMed DOI PMC
Čabanová K, et al. Raman microspectroscopy as a useful tool for nanopathology. J. Raman Spectrosc. 2017;48:357–362. doi: 10.1002/jrs.5045. DOI
Salkind NJ. Encyclopedia of Measurement and Statistics. SAGE Publications; 2007.
R: A language and environment for statistical computing. The R Project for Statistical Computing. https://www.R-project.org/ (2018). Accessed 18 Mar 2021.
Lê S, Josse J, Husson F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008 doi: 10.18637/jss.v025.i01. DOI
Deepak FL. Metal Nanoparticles and Clusters: Advances in Synthesis, Properties and Applications. Springer; 2018.
Xu L, Liang H-W, Yang Y, Yu S-H. Stability and reactivity: Positive and negative aspects for nanoparticle processing. Chem. Rev. 2018;118:3209–3250. doi: 10.1021/acs.chemrev.7b00208. PubMed DOI
Sovinová H, Csémy L. Užívání tabáku v České republice 2015: Výzkumná zpráva: Tobacco use in the Czech Republic 2015: Research report. Státní zdravotní ústav. 2016;1:21.
Statistical yearbook of the Czech Republic. in Czech Statistical Office vol. 2017 824 (Český spisovatel: Praha, 2017).
Sillanpää M, et al. Chemical composition, mass size distribution and source analysis of long-range transported wildfire smokes in Helsinki. Sci. Total Environ. 2005;350:119–135. doi: 10.1016/j.scitotenv.2005.01.024. PubMed DOI
Tomonaga T, et al. Assessment of pulmonary toxicity induced by inhaled toner with external additives. Biomed. Res. Int. 2017;2017:1–12. doi: 10.1155/2017/4245309. PubMed DOI PMC
Kukutschová J, et al. Wear performance and wear debris of semimetallic automotive brake materials. Wear. 2010;268:86–93. doi: 10.1016/j.wear.2009.06.039. DOI
Figarol A, et al. In vitro toxicity of carbon nanotubes, nano-graphite and carbon black, similar impacts of acid functionalisation. Toxicol. In Vitro. 2015;30:476–485. doi: 10.1016/j.tiv.2015.09.014. PubMed DOI
Lindberg HK, et al. Genotoxicity of nanomaterials: DNA damage and micronuclei induced by carbon nanotubes and graphite nanofibres in human bronchial epithelial cells in vitro. Toxicol. Lett. 2009;186:166–173. doi: 10.1016/j.toxlet.2008.11.019. PubMed DOI
Occupational Health Guidelines for Chemical Hazards. Centers for Disease Control and Prevention. https://www.cdc.gov/niosh/docs/81-123/default.html. (1995). Accessed 18 Mar 2021.
Chen T, Yan J, Li Y. Genotoxicity of titanium dioxide nanoparticles. J. Food Drug Anal. 2014;22:95–104. doi: 10.1016/j.jfda.2014.01.008. PubMed DOI PMC
Lehto S, et al. Comparison of food colour regulations in the EU and the US: A review of current provisions. Food Addit. Contam. A. 2017;34:335–355. doi: 10.1080/19440049.2016.1274431. PubMed DOI
Periasamy VS, et al. Identification of titanium dioxide nanoparticles in food products: Induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells. Environ. Toxicol. Pharmacol. 2015;39:176–186. doi: 10.1016/j.etap.2014.11.021. PubMed DOI
Skocaj M, Filipic M, Petkovic J, Novak S. Titanium dioxide in our everyday life; is it safe? Radiol. Oncol. 2011 doi: 10.2478/v10019-011-0037-0. PubMed DOI PMC
Jovanović B, et al. The effects of a human food additive, titanium dioxide nanoparticles E171, on Drosophila melanogaster—A 20 generation dietary exposure experiment. Sci. Rep. 2018 doi: 10.1038/s41598-018-36174-w. PubMed DOI PMC
Pinget G, et al. Impact of the food additive titanium dioxide (E171) on gut microbiota-host interaction. Front. Nutr. 2019 doi: 10.3389/fnut.2019.00100. PubMed DOI PMC
Pelclova D, et al. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nano TiO 2 particles: A cross-sectional study. J. Breath Res. 2015;9:036008. doi: 10.1088/1752-7155/9/3/036008. PubMed DOI
IARC monographs on the identification of carcinogenic hazards to humans donate now. International Agency for Reasearch of Cancer. https://monographs.iarc.who.int/agents-classified-by-the-iarc/ (2021). Accessed 18 Mar 2021.
Baranowska-Wolnicka, A. & Zięba, H. R. Holistic therapy of disorders of cognition functions in schizophrenia. In NeuroRehab 2019: IX. Medzinárodný neurorehabilitačný kongres, 17–18 (2019).
Solid Anorganic Particles and Chronic Rhinosinusitis: A Histopathology Study