Raman microspectroscopy and laser-induced breakdown spectroscopy for the analysis of polyethylene microplastics in human soft tissues
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39315169
PubMed Central
PMC11417552
DOI
10.1016/j.heliyon.2024.e37844
PII: S2405-8440(24)13875-3
Knihovny.cz E-zdroje
- Klíčová slova
- Exposure, Health hazards, Human tonsils, LIBS, Laser-induced breakdown spectroscopy, Microplastics, Plastic pollution, Polyethylene, Raman spectroscopy, Tissue analysis,
- Publikační typ
- časopisecké články MeSH
People are exposed to microplastics (MPs) on a large scale in everyday life. However, it is not clear whether MPs can also be distributed and retained in certain tissues. Therefore, the development of analytical methods capable of detecting MPs in specific human organs/tissues is of utmost importance. In this study, the use and combination of spectroscopic techniques, namely Raman microspectroscopy and laser-induced breakdown spectroscopy (LIBS), was tested for the detection of polyethylene (PE) MPs in human tonsils. Preliminary results showed that Raman microspectroscopy was able to detect MPs down to 1 μm in size and LIBS down to 10 μm. In the next step, human tonsils were spiked with PE MPs, and digested. The filtered particles were analyzed using Raman microspectroscopy and LIBS, and complemented by X-ray fluorescence (XRF). The results showed that Raman microspectroscopy could reliably detect PE MPs in spiked human tonsils, while LIBS and XRF served as a reference analytical method to characterize particles that could not be classified by Raman microspectroscopy for their non-organic origin. The results of this study, supported by a current feasibility study conducted on clinical samples, demonstrated the reliability and feasibility of this approach for monitoring MPs in biotic samples.
Department of Chemistry Faculty of Science Masaryk University Kotlářská 2 611 37 Brno Czech Republic
Faculty of Medicine Masaryk University Brno Kamenice 5 62500 Brno Czech Republic
Zobrazit více v PubMed
Liu Xuewei, Lei Tingzhou, Boré Abdoulaye, Lou Ziyang, Abdouraman Bary, Wenchao M. Evolution of global plastic waste trade flows from 2000 to 2020 and its predicted trade sinks in 2030. J. Clean. Prod. 2022;376 doi: 10.1016/j.jclepro.2022.134373. DOI
Ragusa A, Matta M, Cristiano L, et al. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. 2022. Environ. Int. 2021;146 doi: 10.1016/j.envint.2020.106274. PubMed DOI PMC
Zhao Bosen, Rehati Palizhati, Yang Zhu, Cai Zongwei, Guo Caixia, Yanbo L. The potential toxicity of microplastics on human health. Sci. Total Environ. 2024;912 doi: 10.1016/j.scitotenv.2023.168946. PubMed DOI
Vianello A., Jensen R.L., Liu L., et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 2019;9(1):8670. doi: 10.1038/s41598-019-45054-w. PubMed DOI PMC
Jenner L., et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total Environ. 2022;831:154907. doi: 10.1016/j.scitotenv.2022.154907. PubMed DOI
Čabanová K., Motyka O., Bielniková H., et al. Identification of the phase composition of solid microparticles in the nasal mucosa of patients with chronic hypertrophic rhinitis using Raman microspectroscopy. Sci. Rep. 2021;11(1) doi: 10.1038/s41598-021-98521-8. PubMed DOI PMC
AlaMJMaSHBaADVaJJG-VaMHL Heather. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022;163 doi: 10.1016/j.envint.2022.107199. PubMed DOI
Luqman A., Nugrahapraja H., Wahyuono R.A., et al. Foods, and Drinking Water Associated with Indonesian Coastal Population. 2021. Microplastic contamination in human stools.
Montano L., Giorgini E., Notarstefano V., et al. Raman Microspectroscopy evidence of microplastics in human semen. Sci. Total Environ. 2023;901 doi: 10.1016/j.scitotenv.2023.165922. PubMed DOI
Montano L., Raimondo S., Piscopo M., et al. First evidence of microplastics in human ovarian follicular fluid: an emerging threat to female fertility. medRxiv. 2024;2024 doi: 10.1101/2024.04.04.24305264. 04.04.24305264. DOI
Lee Y., Cho J., Sohn J., et al. Health effects of microplastic exposures: current issues and perspectives in South Korea. Yonsei Med. J. 2023;64(5):301–308. PubMed PMC
Kannan K., Vimalkumar K. A review of human exposure to microplastics and insights into microplastics as obesogens. Front. Endocrinol. 2021;12 doi: 10.3389/fendo.2021.724989. PubMed DOI PMC
Adhikari S., Kelkar V., Kumar R., et al. Methods and challenges in the detection of microplastics and nanoplastics: a mini-review. Polym. Int. 2022;71(5):543–551. doi: 10.1002/pi.6348. DOI
Thiele C.J., Hudson M.D., Russell A.E. Evaluation of existing methods to extract microplastics from bivalve tissue: adapted KOH digestion protocol improves filtration at single-digit pore size. Mar. Pollut. Bull. 2019;142:384–393. doi: 10.1016/j.marpolbul.2019.03.003. PubMed DOI
Di Fiore C., Ishikawa Y., Wright S.L. A review on methods for extracting and quantifying microplastic in biological tissues. J. Hazard Mater. 2024;464 doi: 10.1016/j.jhazmat.2023.132991. PubMed DOI
Whiting Q.T., O'Connor K.F., Potter P.M., et al. A high-throughput, automated technique for microplastics detection, quantification, and characterization in surface waters using laser direct infrared spectroscopy. Anal. Bioanal. Chem. 2022;414(29):8353–8364. doi: 10.1007/s00216-022-04371-2. PubMed DOI PMC
Tian X., Beén F., Bäuerlein P.S. Quantum cascade laser imaging (LDIR) and machine learning for the identification of environmentally exposed microplastics and polymers. Environ. Res. 2022;212 doi: 10.1016/j.envres.2022.113569. PubMed DOI
Erni-Cassola G., Zadjelovic V., Gibson M.I., et al. Distribution of plastic polymer types in the marine environment; A meta-analysis. J. Hazard Mater. 2019;369:691–698. doi: 10.1016/j.jhazmat.2019.02.067. PubMed DOI
Ekvall M.T., Naidu S., Lundqvist M., et al. The forgotten tonsils—does the immune active organ absorb nanoplastics? Frontiers in Nanotechnology. 2022;4 doi: 10.3389/fnano.2022.923634. DOI
Dehaut A., Cassone A.-L., Frère L., et al. Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ. Pollut. 2016;215:223–233. doi: 10.1016/j.envpol.2016.05.018. PubMed DOI
Kühn S., van Werven B., van Oyen A., et al. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Mar. Pollut. Bull. 2017;115(1):86–90. doi: 10.1016/j.marpolbul.2016.11.034. PubMed DOI
Rozman U., Kalčíková G. Seeking for a perfect (non-spherical) microplastic particle – the most comprehensive review on microplastic laboratory research. J. Hazard Mater. 2022;424 doi: 10.1016/j.jhazmat.2021.127529. PubMed DOI
Geppner L., Karaca J., Wegner W., Rados M., Gutwald T., Werth P., Henjakovic M. Testing of Different Digestion Solutions on Tissue Samples and the Effects of Used Potassium Hydroxide Solution on Polystyrene Microspheres. Toxics. 2023;11(9):790. doi: 10.3390/toxics11090790. PubMed DOI PMC
Pořízka P., Klus J., Képeš E., et al. On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review. Spectrochim. Acta B Atom Spectrosc. 2018;148:65–82. doi: 10.1016/j.sab.2018.05.030. DOI
Nuelle M.-T., Dekiff J.H., Remy D., et al. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 2014;184:161–169. doi: 10.1016/j.envpol.2013.07.027. PubMed DOI
Cole M., Webb H., Lindeque P.K., et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 2014;4(1):4528. doi: 10.1038/srep04528. PubMed DOI PMC
Enders K., Lenz R., Beer S., et al. Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers. ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 2017;74(1):326–331. doi: 10.1093/icesjms/fsw173. DOI
Pfeiffer F., Fischer E.K. Various digestion protocols within microplastic sample processing—evaluating the resistance of different synthetic polymers and the efficiency of biogenic organic matter destruction. Front. Environ. Sci. 2020;8 doi: 10.3389/fenvs.2020.572424. DOI
Catarino A.I., Thompson R., Sanderson W., et al. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environ. Toxicol. Chem. 2017;36(4):947–951. doi: 10.1002/etc.3608. PubMed DOI
Roch S., Brinker A. Rapid and efficient method for the detection of microplastic in the gastrointestinal tract of fishes. Environ. Sci. Technol. 2017;51(8):4522–4530. doi: 10.1021/acs.est.7b00364. PubMed DOI
Ibrahim Y.S., Tuan Anuar S., Azmi A.A., et al. Detection of microplastics in human colectomy specimens. JGH Open. 2021;5(1):116–121. doi: 10.1002/jgh3.12457. PubMed DOI PMC
Ribeiro F., Okoffo E.D., O'Brien J.W., et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by Pyrolysis gas Chromatography mass spectrometry. Environ. Sci. Technol. 2020;54(15):9408–9417. doi: 10.1021/acs.est.0c02337. PubMed DOI
Dong X., Liu X., Hou Q., et al. From natural environment to animal tissues: a review of microplastics(nanoplastics) translocation and hazards studies. Sci. Total Environ. 2023;855 doi: 10.1016/j.scitotenv.2022.158686. PubMed DOI
Gillibert R., Balakrishnan G., Deshoules Q., et al. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ. Sci. Technol. 2019;53(15):9003–9013. doi: 10.1021/acs.est.9b03105. PubMed DOI
Zhou X.-X., Liu R., Hao L.-T., et al. Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy. Talanta. 2021;221 doi: 10.1016/j.talanta.2020.121552. PubMed DOI
Sommer C., Schneider L.M., Nguyen J., et al. Identifying microplastic litter with laser induced breakdown spectroscopy: a first approach. Mar. Pollut. Bull. 2021;171 doi: 10.1016/j.marpolbul.2021.112789. PubMed DOI
Pořízka P., Brunnbauer L., Porkert M., et al. Laser-based techniques: Novel tools for the identification and characterization of aged microplastics with developed biofilm. Chemosphere. 2023;313 doi: 10.1016/j.chemosphere.2022.137373. PubMed DOI