Raman microspectroscopy and laser-induced breakdown spectroscopy for the analysis of polyethylene microplastics in human soft tissues

. 2024 Sep 30 ; 10 (18) : e37844. [epub] 20240911

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39315169
Odkazy

PubMed 39315169
PubMed Central PMC11417552
DOI 10.1016/j.heliyon.2024.e37844
PII: S2405-8440(24)13875-3
Knihovny.cz E-zdroje

People are exposed to microplastics (MPs) on a large scale in everyday life. However, it is not clear whether MPs can also be distributed and retained in certain tissues. Therefore, the development of analytical methods capable of detecting MPs in specific human organs/tissues is of utmost importance. In this study, the use and combination of spectroscopic techniques, namely Raman microspectroscopy and laser-induced breakdown spectroscopy (LIBS), was tested for the detection of polyethylene (PE) MPs in human tonsils. Preliminary results showed that Raman microspectroscopy was able to detect MPs down to 1 μm in size and LIBS down to 10 μm. In the next step, human tonsils were spiked with PE MPs, and digested. The filtered particles were analyzed using Raman microspectroscopy and LIBS, and complemented by X-ray fluorescence (XRF). The results showed that Raman microspectroscopy could reliably detect PE MPs in spiked human tonsils, while LIBS and XRF served as a reference analytical method to characterize particles that could not be classified by Raman microspectroscopy for their non-organic origin. The results of this study, supported by a current feasibility study conducted on clinical samples, demonstrated the reliability and feasibility of this approach for monitoring MPs in biotic samples.

Zobrazit více v PubMed

Liu Xuewei, Lei Tingzhou, Boré Abdoulaye, Lou Ziyang, Abdouraman Bary, Wenchao M. Evolution of global plastic waste trade flows from 2000 to 2020 and its predicted trade sinks in 2030. J. Clean. Prod. 2022;376 doi: 10.1016/j.jclepro.2022.134373. DOI

Ragusa A, Matta M, Cristiano L, et al. Deeply in Plasticenta: Presence of Microplastics in the Intracellular Compartment of Human Placentas. 2022. Environ. Int. 2021;146 doi: 10.1016/j.envint.2020.106274. PubMed DOI PMC

Zhao Bosen, Rehati Palizhati, Yang Zhu, Cai Zongwei, Guo Caixia, Yanbo L. The potential toxicity of microplastics on human health. Sci. Total Environ. 2024;912 doi: 10.1016/j.scitotenv.2023.168946. PubMed DOI

Vianello A., Jensen R.L., Liu L., et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 2019;9(1):8670. doi: 10.1038/s41598-019-45054-w. PubMed DOI PMC

Jenner L., et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total Environ. 2022;831:154907. doi: 10.1016/j.scitotenv.2022.154907. PubMed DOI

Čabanová K., Motyka O., Bielniková H., et al. Identification of the phase composition of solid microparticles in the nasal mucosa of patients with chronic hypertrophic rhinitis using Raman microspectroscopy. Sci. Rep. 2021;11(1) doi: 10.1038/s41598-021-98521-8. PubMed DOI PMC

AlaMJMaSHBaADVaJJG-VaMHL Heather. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 2022;163 doi: 10.1016/j.envint.2022.107199. PubMed DOI

Luqman A., Nugrahapraja H., Wahyuono R.A., et al. Foods, and Drinking Water Associated with Indonesian Coastal Population. 2021. Microplastic contamination in human stools.

Montano L., Giorgini E., Notarstefano V., et al. Raman Microspectroscopy evidence of microplastics in human semen. Sci. Total Environ. 2023;901 doi: 10.1016/j.scitotenv.2023.165922. PubMed DOI

Montano L., Raimondo S., Piscopo M., et al. First evidence of microplastics in human ovarian follicular fluid: an emerging threat to female fertility. medRxiv. 2024;2024 doi: 10.1101/2024.04.04.24305264. 04.04.24305264. DOI

Lee Y., Cho J., Sohn J., et al. Health effects of microplastic exposures: current issues and perspectives in South Korea. Yonsei Med. J. 2023;64(5):301–308. PubMed PMC

Kannan K., Vimalkumar K. A review of human exposure to microplastics and insights into microplastics as obesogens. Front. Endocrinol. 2021;12 doi: 10.3389/fendo.2021.724989. PubMed DOI PMC

Adhikari S., Kelkar V., Kumar R., et al. Methods and challenges in the detection of microplastics and nanoplastics: a mini-review. Polym. Int. 2022;71(5):543–551. doi: 10.1002/pi.6348. DOI

Thiele C.J., Hudson M.D., Russell A.E. Evaluation of existing methods to extract microplastics from bivalve tissue: adapted KOH digestion protocol improves filtration at single-digit pore size. Mar. Pollut. Bull. 2019;142:384–393. doi: 10.1016/j.marpolbul.2019.03.003. PubMed DOI

Di Fiore C., Ishikawa Y., Wright S.L. A review on methods for extracting and quantifying microplastic in biological tissues. J. Hazard Mater. 2024;464 doi: 10.1016/j.jhazmat.2023.132991. PubMed DOI

Whiting Q.T., O'Connor K.F., Potter P.M., et al. A high-throughput, automated technique for microplastics detection, quantification, and characterization in surface waters using laser direct infrared spectroscopy. Anal. Bioanal. Chem. 2022;414(29):8353–8364. doi: 10.1007/s00216-022-04371-2. PubMed DOI PMC

Tian X., Beén F., Bäuerlein P.S. Quantum cascade laser imaging (LDIR) and machine learning for the identification of environmentally exposed microplastics and polymers. Environ. Res. 2022;212 doi: 10.1016/j.envres.2022.113569. PubMed DOI

Erni-Cassola G., Zadjelovic V., Gibson M.I., et al. Distribution of plastic polymer types in the marine environment; A meta-analysis. J. Hazard Mater. 2019;369:691–698. doi: 10.1016/j.jhazmat.2019.02.067. PubMed DOI

Ekvall M.T., Naidu S., Lundqvist M., et al. The forgotten tonsils—does the immune active organ absorb nanoplastics? Frontiers in Nanotechnology. 2022;4 doi: 10.3389/fnano.2022.923634. DOI

Dehaut A., Cassone A.-L., Frère L., et al. Microplastics in seafood: benchmark protocol for their extraction and characterization. Environ. Pollut. 2016;215:223–233. doi: 10.1016/j.envpol.2016.05.018. PubMed DOI

Kühn S., van Werven B., van Oyen A., et al. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Mar. Pollut. Bull. 2017;115(1):86–90. doi: 10.1016/j.marpolbul.2016.11.034. PubMed DOI

Rozman U., Kalčíková G. Seeking for a perfect (non-spherical) microplastic particle – the most comprehensive review on microplastic laboratory research. J. Hazard Mater. 2022;424 doi: 10.1016/j.jhazmat.2021.127529. PubMed DOI

Geppner L., Karaca J., Wegner W., Rados M., Gutwald T., Werth P., Henjakovic M. Testing of Different Digestion Solutions on Tissue Samples and the Effects of Used Potassium Hydroxide Solution on Polystyrene Microspheres. Toxics. 2023;11(9):790. doi: 10.3390/toxics11090790. PubMed DOI PMC

Pořízka P., Klus J., Képeš E., et al. On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review. Spectrochim. Acta B Atom Spectrosc. 2018;148:65–82. doi: 10.1016/j.sab.2018.05.030. DOI

Nuelle M.-T., Dekiff J.H., Remy D., et al. A new analytical approach for monitoring microplastics in marine sediments. Environ. Pollut. 2014;184:161–169. doi: 10.1016/j.envpol.2013.07.027. PubMed DOI

Cole M., Webb H., Lindeque P.K., et al. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 2014;4(1):4528. doi: 10.1038/srep04528. PubMed DOI PMC

Enders K., Lenz R., Beer S., et al. Extraction of microplastic from biota: recommended acidic digestion destroys common plastic polymers. ICES (Int. Counc. Explor. Sea) J. Mar. Sci. 2017;74(1):326–331. doi: 10.1093/icesjms/fsw173. DOI

Pfeiffer F., Fischer E.K. Various digestion protocols within microplastic sample processing—evaluating the resistance of different synthetic polymers and the efficiency of biogenic organic matter destruction. Front. Environ. Sci. 2020;8 doi: 10.3389/fenvs.2020.572424. DOI

Catarino A.I., Thompson R., Sanderson W., et al. Development and optimization of a standard method for extraction of microplastics in mussels by enzyme digestion of soft tissues. Environ. Toxicol. Chem. 2017;36(4):947–951. doi: 10.1002/etc.3608. PubMed DOI

Roch S., Brinker A. Rapid and efficient method for the detection of microplastic in the gastrointestinal tract of fishes. Environ. Sci. Technol. 2017;51(8):4522–4530. doi: 10.1021/acs.est.7b00364. PubMed DOI

Ibrahim Y.S., Tuan Anuar S., Azmi A.A., et al. Detection of microplastics in human colectomy specimens. JGH Open. 2021;5(1):116–121. doi: 10.1002/jgh3.12457. PubMed DOI PMC

Ribeiro F., Okoffo E.D., O'Brien J.W., et al. Quantitative analysis of selected plastics in high-commercial-value Australian seafood by Pyrolysis gas Chromatography mass spectrometry. Environ. Sci. Technol. 2020;54(15):9408–9417. doi: 10.1021/acs.est.0c02337. PubMed DOI

Dong X., Liu X., Hou Q., et al. From natural environment to animal tissues: a review of microplastics(nanoplastics) translocation and hazards studies. Sci. Total Environ. 2023;855 doi: 10.1016/j.scitotenv.2022.158686. PubMed DOI

Gillibert R., Balakrishnan G., Deshoules Q., et al. Raman tweezers for small microplastics and nanoplastics identification in seawater. Environ. Sci. Technol. 2019;53(15):9003–9013. doi: 10.1021/acs.est.9b03105. PubMed DOI

Zhou X.-X., Liu R., Hao L.-T., et al. Identification of polystyrene nanoplastics using surface enhanced Raman spectroscopy. Talanta. 2021;221 doi: 10.1016/j.talanta.2020.121552. PubMed DOI

Sommer C., Schneider L.M., Nguyen J., et al. Identifying microplastic litter with laser induced breakdown spectroscopy: a first approach. Mar. Pollut. Bull. 2021;171 doi: 10.1016/j.marpolbul.2021.112789. PubMed DOI

Pořízka P., Brunnbauer L., Porkert M., et al. Laser-based techniques: Novel tools for the identification and characterization of aged microplastics with developed biofilm. Chemosphere. 2023;313 doi: 10.1016/j.chemosphere.2022.137373. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...