Micro- and Nanosized Particles in Nasal Mucosa: A Pilot Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26125023
PubMed Central
PMC4466340
DOI
10.1155/2015/505986
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- kovové nanočástice * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- nosní sliznice patologie MeSH
- pilotní projekty MeSH
- senioři MeSH
- sinusitida patologie MeSH
- titan izolace a purifikace metabolismus MeSH
- velikost částic MeSH
- železo izolace a purifikace metabolismus MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- titan MeSH
- železo MeSH
OBJECTIVE: The aim of this prospective study is to evaluate presence and quantity of micro- and nanosized particles (NPs) and interindividual differences in their distribution and composition in nasal mucosa. METHODS: Six samples of nasal mucosa obtained by mucotomy from patients with chronic hypertrophic rhinosinusitis were examined. Samples divided into 4 parts according to the distance from the nostrils were analyzed by scanning electron microscopy and Raman microspectroscopy to detect solid particles and characterize their morphology and composition. A novel method of quantification of the particles was designed and used to evaluate interindividual differences in distribution of the particles. The findings were compared with patients' employment history. RESULTS: In all the samples, NPs of different elemental composition were found (iron, barium, copper, titanium, etc.), predominantly in the parts most distant from nostrils, in various depths from the surface of the mucosa and interindividual differences in their quantity and composition were found, possibly in relation to professional exposition. CONCLUSIONS: This study has proven the possibility of quantification of distribution of micro- and nanosized particles in tissue samples and that the NPs may deposit in deeper layers of mucosa and their elemental composition may be related to professional exposition to the sources of NPs.
Zobrazit více v PubMed
Monteiro-Riviere N. A., Tran C. L. Nanotoxicology: Characterization, Dosing and Health Effects. New York, NY, USA: Informa Healthcare; 2007.
Donaldson K., Stone V., Tran C. L., Kreyling W., Borm P. J. A. Nanotoxicology. Occupational and Environmental Medicine. 2004;61(9):727–728. doi: 10.1136/oem.2004.013243. PubMed DOI PMC
Garnett M. C., Kallinteri P. Nanomedicines and nanotoxicology: some physiological principles. Occupational Medicine. 2006;56(5):307–311. doi: 10.1093/occmed/kql052. PubMed DOI
Srinivas A., Rao P. J., Selvam G., Murthy P. B., Reddy P. N. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicology Letters. 2011;205(2):105–115. doi: 10.1016/j.toxlet.2011.05.1027. PubMed DOI
Foldbjerg R., Dang D. A., Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Archives of Toxicology. 2011;85(7):743–750. doi: 10.1007/s00204-010-0545-5. PubMed DOI
Gehrke H., Pelka J., Hartinger C. G., et al. Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Archives of Toxicology. 2011;85(7):799–812. doi: 10.1007/s00204-010-0636-3. PubMed DOI
Hackenberg S., Scherzed A., Technau A., et al. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicology in Vitro. 2011;25(3):657–663. doi: 10.1016/j.tiv.2011.01.003. PubMed DOI
Xu J., Dai W., Wang Z., Chen B., Li Z., Fan X. Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen A protects mice against nasopharyngeal colonization by Streptococcus pneumoniae . Clinical and Vaccine Immunology. 2011;18(1):75–81. doi: 10.1128/cvi.00263-10. PubMed DOI PMC
Kumar A., Dhawan A. Genotoxic and carcinogenic potential of engineered nanoparticles: an update. Archives of Toxicology. 2013;87(11):1883–1900. doi: 10.1007/s00204-013-1128-z. PubMed DOI
Singh S., Nalwa H. S. Nanotechnology and health safety—toxicity and risk assessments of nanostructured materials on human health. Journal of Nanoscience and Nanotechnology. 2007;7(9):3048–3070. doi: 10.1166/jnn.2007.922. PubMed DOI
Genter M. B., Newman N. C., Shertzer H. G., Ali S. F., Bolon B. Distribution and systemic effects of intranasally administered 25 nm silver nanoparticles in adult mice. Toxicologic Pathology. 2012;40(7):1004–1013. doi: 10.1177/0192623312444470. PubMed DOI
Oberdörster G., Sharp Z., Atudorei V., et al. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. Journal of Toxicology and Environmental Health, Part A: Current Issues. 2002;65(20):1531–1543. doi: 10.1080/00984100290071658. PubMed DOI
Ghalati P. F., Keshavarzian E., Abouali O., Faramarzi A., Tu J., Shakibafard A. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway. Computers in Biology and Medicine. 2012;42(1):39–49. doi: 10.1016/j.compbiomed.2011.10.005. PubMed DOI
Zamankhan P., Ahmadi G., Wang Z., et al. Airflow and deposition of nano-particles in a human nasal cavity. Aerosol Science and Technology. 2006;40(6):463–476. doi: 10.1080/02786820600660903. DOI
Rim K. T., Koo K. H., Park J. S. Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Safety and Health at Work. 2013;4(1):12–26. doi: 10.5491/shaw.2013.4.1.12. PubMed DOI PMC
Zeleník K., Kukutschová J., Dvořáčková J., et al. Possible role of nano-sized particles in chronic tonsillitis and tonsillar carcinoma: a pilot study. European Archives of Oto-Rhino-Laryngology. 2013;270(2):705–709. doi: 10.1007/s00405-012-2069-5. PubMed DOI
Fokkens W. J., Lund V. J., Mullol J., et al. European position paper on rhinosinusitis and nasal polyps 2012. Rhinology. 2012;50(supplement 23):1–298. PubMed
Oberdörster G., Oberdörster E., Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives. 2005;113(7):823–839. doi: 10.1289/ehp.7339. PubMed DOI PMC
HSE. Health Effects of Particles Produced for Nanotechnologies. HSE Books; 2004. (EH75/6).
Richman J. D., Livi K. J. T., Geyh A. S. A scanning transmission electron microscopy method for determination of manganese composition in welding fume as a function of primary particle size. Journal of Aerosol Science. 2011;42(6):408–418. doi: 10.1016/j.jaerosci.2011.03.004. PubMed DOI PMC
Oprya M., Kiro S., Worobiec A., et al. Size distribution and chemical properties of welding fumes of inhalable particles. Journal of Aerosol Science. 2012;45:50–57. doi: 10.1016/j.jaerosci.2011.10.004. DOI
Solid Anorganic Particles and Chronic Rhinosinusitis: A Histopathology Study