Solid Anorganic Particles and Chronic Rhinosinusitis: A Histopathology Study

. 2022 Jun 14 ; 19 (12) : . [epub] 20220614

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35742518

Although extensive research has shown the pathological effect of fine and ultrafine airborne particles, clear evidence of association of environmental exposure to them and inflammatory changes in human nasal mucosa is missing. Meanwhile, pathogenesis of chronic rhinosinusitis, despite being a disease with high prevalence in the population, is still unclear. The increasing evidence of the pro-inflammatory properties of these particles raises the question of their possible role in chronic rhinosinusitis. The presented study focused on detection of microsized anorganic particles and clusters of nanosized anorganic particles in the nasal mucosa of patients with chronic rhinosinusitis by Raman microspectroscopy and comparison of their composition to histologic findings. The results were compared to the findings in mucosa obtained from cadavers with no history of chronic rhinosinusitis. Solid particles were found in 90% of tissue samples in the group with chronic rhinosinusitis, showing histologic signs of inflammation in 95%, while in the control group, the particles were found in 20% of samples, with normal histologic findings in all of them. The main detected compounds were graphite, TiO2, amorphous carbon, calcite, ankerite and iron compounds. The results are in accordance with the premise that exogenous airborne particles interact with the nasal mucosa and possibly deposit in it in cases where the epithelial barrier is compromised in chronic rhinosinusitis.

Zobrazit více v PubMed

Schraufnagel D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020;52:311–317. doi: 10.1038/s12276-020-0403-3. PubMed DOI PMC

Moreno-Ríos A.L., Tejeda-Benítez L.P., Bustillo-Lecompte C.F. Sources, characteristics, toxicity, and control of ultrafine particles: An overview. Geosci. Front. 2022;13:101147. doi: 10.1016/j.gsf.2021.101147. DOI

Kwon H.-S., Ryu M.H., Carlsten C. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 2020;52:318–328. doi: 10.1038/s12276-020-0405-1. PubMed DOI PMC

HSE . Health Effects of Particles Produced for Nanotechnologies. Volume EH75/6 HSE; Sudbury, UK: 2004.

Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) The Appropriateness of Existing Methodologies to Assess the Potential Risks Associated with Engineered and Adventitious Products of Nanotechnologies. Adopted by the SCENIHR during the 10th Plenary Meeting of 10 March 2006 after Public Consultation Dostupné z. n.d. [(accessed on 12 December 2021)]. Available online: http://EcEuropaEu/Health/Ph_risk/Committees/04_scenihr/Docs/Scenihr_o_003bPdf.

Dvorackova J., Bielnikova H., Kukutschova J., Peikertova P., Filip P., Zelenik K., Kominek P., Uvirova M., Pradna J., Cermakova Z., et al. Detection of nano- and micro-sized particles in routine biopsy material—Pilot study. Biomed. Pap. 2015;159:87–92. doi: 10.5507/bp.2012.104. PubMed DOI

Monteiro-Riviere N.A., Lang C.T. Nanotoxicology: Characterization, Dosing and Health Effects. Informa Healthcare Inc.; Wilmington, DE, USA: 2007.

Zeleník K., Kukutschová J., Dvořáčková J., Bielniková H., Peikertová P., Čábalová L., Komínek P. Possible role of nano-sized particles in chronic tonsillitis and tonsillar carcinoma: A pilot study. Eur. Arch. Otorhinolaryngol. 2013;270:705–709. doi: 10.1007/s00405-012-2069-5. PubMed DOI

Srinivas A., Rao P.J., Selvam G., Murthy P.B., Reddy P.N. Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicol. Lett. 2011;205:105–115. doi: 10.1016/j.toxlet.2011.05.1027. PubMed DOI

Hackenberg S., Scherzed A., Technau A., Kessler M., Froelich K., Ginzkey C., Koehler C., Burghartz M., Hagen R., Kleinsasser N. Cytotoxic, genotoxic and pro-inflammatory effects of zinc oxide nanoparticles in human nasal mucosa cells in vitro. Toxicol. Vitr. 2011;25:657–25663. doi: 10.1016/j.tiv.2011.01.003. PubMed DOI

Oberdörster G., Sharp Z., Atudorei V., Elder A., Gelein R., Lunts A., Kreyling W., Cox C. Extrapulmonary translocation of ultrafine carbon particles following whole-body inhalation exposure of rats. J. Toxicol. Environ. Health Part A. 2002;65:1531–1543. doi: 10.1080/00984100290071658. PubMed DOI

Čabanová K., Motyka O., Čábalová L., Hrabovská K., Bielniková H., Kuzníková Ľ., Dvořáčková J., Zeleník K., Komínek P., Kukutschová J. Metal particles in mucus and hypertrophic tissue of the inferior nasal turbinates from the human upper respiratory tract. Environ. Sci. Pollut. Res. 2020;27:28146–28154. doi: 10.1007/s11356-020-09156-7. PubMed DOI

Al-Rawi M., Diabaté S., Weiss C. Uptake and intracellular localization of submicron and nano-sized SiO2 particles in HeLa cells. Arch. Toxicol. 2011;85:813–826. doi: 10.1007/s00204-010-0642-5. PubMed DOI

Bogdan J., Jackowska-Tracz A., Zarzyńska J., Pławińska-Czarnak J. Chances and limitations of nanosized titanium dioxide practical application in view of its physicochemical properties. Nanoscale Res. Lett. 2015;10:57. doi: 10.1186/s11671-015-0753-2. PubMed DOI PMC

Čabanová K., Motyka O., Bielniková H., Čábalová L., Handlos P., Zabiegaj D., Zeleník K., Dvořáčková J., Komínek P., Heviánková S., et al. Identification of the phase composition of solid microparticles in the nasal mucosa of patients with chronic hypertrophic rhinitis using Raman microspectroscopy. Sci. Rep. 2021;11:18989. doi: 10.1038/s41598-021-98521-8. PubMed DOI PMC

Čábalová L., Čabanová K., Bielniková H., Kukutschová J., Dvořáčková J., Dědková K., Zeleník K., Komínek P. Micro- and Nanosized Particles in Nasal Mucosa: A Pilot Study. BioMed Res. Int. 2015;2015:505986. doi: 10.1155/2015/505986. PubMed DOI PMC

Ghalati P.F., Keshavarzian E., Abouali O., Faramarzi A., Tu J., Shakibafard A. Numerical analysis of micro- and nano-particle deposition in a realistic human upper airway. Comput. Biol. Med. 2012;42:39–49. doi: 10.1016/j.compbiomed.2011.10.005. PubMed DOI

Se C.M., Inthavong K., Tu J. Unsteady Particle Deposition in a Human Nasal Cavity during Inhalation. J. Comput. Multiph. Flows. 2010;2:207–218. doi: 10.1260/1757-482X.2.4.207. DOI

Wang S., Inthavong K., Wen J., Tu J., Xue C. Comparison of micron- and nanoparticle deposition patterns in a realistic human nasal cavity. Respir. Physiol. Neurobiol. 2009;166:142–151. doi: 10.1016/j.resp.2009.02.014. PubMed DOI

Fokkens W.J., Lund V.J., Hopkins C., Hellings P.W., Kern R., Reitsma S., Toppila-Salmi S., Bernal-Sprekelsen M., Mullol J., Alobid I., et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58:1–464. doi: 10.4193/Rhin20.401. PubMed DOI

Leland E.M., Zhang Z., Kelly K.M., Ramanathan M. Role of Environmental Air Pollution in Chronic Rhinosinusitis. Curr. Allergy Asthma Rep. 2021;21:42. doi: 10.1007/s11882-021-01019-6. PubMed DOI PMC

Khalmuratova R., Park J.-W., Shin H.-W. Immune Cell Responses and Mucosal Barrier Disruptions in Chronic Rhinosinusitis. Immune Netw. 2017;17:60. doi: 10.4110/in.2017.17.1.60. PubMed DOI PMC

Munger M.A., Radwanski P., Hadlock G.C., Stoddard G., Shaaban A., Falconer J., Grainger D.W., Deering-Rice C.E. In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomedicine. 2014;10:1–9. doi: 10.1016/j.nano.2013.06.010. PubMed DOI PMC

Čabanová K., Peikertová P., Bielniková H., Barošová H., Motyka O., Čábalová L., Dvořáčková J., Komínek P., Kukutschová J. Raman microspectroscopy as a useful tool for nanopathology. J. Raman Spectrosc. 2017;48:357–362. doi: 10.1002/jrs.5045. DOI

Shakeel M., Jabeen F., Shabbir S., Asghar M.S., Khan M.S., Chaudhry A.S. Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: A Review. Biol. Trace Element Res. 2016;172:1–36. doi: 10.1007/s12011-015-0550-x. PubMed DOI

Hou J., Wang L., Wang C., Zhang S., Liu H., Li S., Wang X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. 2019;75:40–53. doi: 10.1016/j.jes.2018.06.010. PubMed DOI

Wang J., Xu Y., Yang Z., Huang R., Chen J., Wang R., Lin Y. Toxicity of Carbon Nanotubes. Curr. Drug Metab. 2013;14:891–899. doi: 10.2174/138920021131400111. PubMed DOI

Madannejad R., Shoaie N., Jahanpeyma F., Darvishi M.H., Azimzadeh M., Javadi H. Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chem. Interact. 2019;307:206–222. doi: 10.1016/j.cbi.2019.04.036. PubMed DOI

Khalid I., Khalid T.J., Jennings J.H. A welder with pneumosiderosis: A case report. Cases J. 2009;2:6639. doi: 10.1186/1757-1626-2-6639. PubMed DOI PMC

Kukutschová J., Roubíček V., Mašláň M., Jančík D., Slovák V., Malachová K., Pavlíčková Z., Filip P. Wear performance and wear debris of semimetallic automotive brake materials. Wear. 2010;268:86–93. doi: 10.1016/j.wear.2009.06.039. DOI

Schleimer R.P. Immunopathogenesis of Chronic Rhinosinusitis and Nasal Polyposis. Annu. Rev. Pathol. Mech. Dis. 2017;12:331–357. doi: 10.1146/annurev-pathol-052016-100401. PubMed DOI PMC

Alekseenko S.I., Skalny A.V., Ajsuvakova O.P., Skalnaya M.G., Notova S.V., Tinkov A.A. Mucociliary transport as a link between chronic rhinosinusitis and trace element dysbalance. Med. Hypotheses. 2019;127:5–10. doi: 10.1016/j.mehy.2019.03.007. PubMed DOI

Geboes K., Riddell R., Öst A., Jensfelt B., Persson T., Löfberg R. A reproducible grading scale for histological assessment of inflammation in ulcerative colitis. Gut. 2000;47:404–409. doi: 10.1136/gut.47.3.404. PubMed DOI PMC

Katainen A. Smoking and workers’ autonomy: A qualitative study on smoking practices in manual work. Health. 2012;16:134–150. doi: 10.1177/1363459311403944. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...