Metal particles in mucus and hypertrophic tissue of the inferior nasal turbinates from the human upper respiratory tract
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2019/56
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.02.1.01/0.0/0.0/17_049/0008441
Operational Programme financed by the European Union
MH CZ - DRO - FNOs/2015
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
32410192
DOI
10.1007/s11356-020-09156-7
PII: 10.1007/s11356-020-09156-7
Knihovny.cz E-zdroje
- Klíčová slova
- Inflammatory tissue, Inhaled metal particles, Mucus, Raman microspectroscopy, Scanning electron microscopy, Vibration magnetometry,
- MeSH
- hlen MeSH
- kovy MeSH
- lidé MeSH
- mikroskopie elektronová rastrovací MeSH
- nosní skořepy * MeSH
- rýma * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kovy MeSH
Mucosal surfaces are the first mechanical barrier preventing the entry of foreign particles into the organism. The study addresses the detection and analysis of metal-based solid particles in cytological mucus samples from the surface of human hypertrophic tissue in the inferior nasal turbinates in patients diagnosed with chronic rhinitis. Solid particles were characterized by scanning electron microscopy and Raman microspectroscopy; all the biological samples were also subjected to vibration magnetometry. Since the upper airways are the first part of the respiratory tract, which is exposed to inhaled particles, it can be assumed that inhaled particles may be partially deposited in this region. Scanning electron microscopy revealed the presence of metal-based solid particles/clusters in the majority of the analysed cytological mucus samples and also in hypertrophic tissues; in all groups, the particles were of submicron size. Raman microspectroscopy detected the presence of particles/clusters based on amorphous carbon, graphite, calcium carbonate, anatase and barite only in the hypertrophic tissue. The obtained results show that the composition of some of the solid particles (i.e. Ba, Zn, Fe and Ti) detected in the mucus from the surface of the hypertrophic tissues resembled the particles found in the hypertrophic tissue itself. It can be assumed that after the capture of the inhaled particles by the mucus, they penetrate into the deeper layers of tissue.
Department of Otorhinolaryngology Ostrava University Hospital Ostrava Czech Republic
Department of Physics VŠB Technical University of Ostrava Ostrava Czech Republic
Faculty of Medicine University of Ostrava Ostrava Czech Republic
Institute of Pathology Ostrava University Hospital Ostrava Czech Republic
Nanotechnology Centre VŠB Technical University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Agency for Toxic Substances and Disease Registry (2007) Toxicological profile for barium and barium compounds. Atlanta, Georgia. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp24.pdf Visited on Jan 07, 2020
Bansil R, Turner BS (2018) The biology of mucus: composition, synthesis and organization. Adv Drug Deliv Rev 124:3–15. https://doi.org/10.1016/j.addr.2017.09.023 DOI
Barbero F, Russo L, Vitali M et al (2017) Formation of the protein corona: the interface between nanoparticles and the immune system. Semin Immunol. https://doi.org/10.1016/j.smim.2017.10.001
Barnham KJ, Bush AI (2014) Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem Soc Rev 43:6727–6749. https://doi.org/10.1039/c4cs00138a DOI
Barua S, Mitragotri S (2014) Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 9:223–243. https://doi.org/10.1016/j.nantod.2014.04.008 DOI
Calmet H, Kleinstreuer C, Houzeaux G, Kolanjiyil AV, Lehmkuhl O, Olivares E, Vázquez M (2018) Subject-variability effects on micron particle deposition in human nasal cavities. J Aerosol Sci 115:12–28. https://doi.org/10.1016/j.jaerosci.2017.10.008 DOI
Chen Y, Shah N, Huggins FE, Huffman GP (2006) Microanalysis of ambient particles from Lexington, KY, by electron microscopy. Atmos Environ 40:651–663. https://doi.org/10.1016/j.atmosenv.2005.09.036 DOI
Costa LG, Cole TB, Coburn J, Chang YC, Dao K, Roqué PJ (2017) Neurotoxicity of traffic-related air pollution. NeuroToxicology. 59:133–139. https://doi.org/10.1016/j.neuro.2015.11.008 DOI
Damgé C, Michel C, Aprahamian M, Couvreur P, Devissaguet JP (1990) Nanocapsules as carriers for oral peptide delivery. J Control Release 13:233–239. https://doi.org/10.1016/0168-3659(90)90013-J DOI
De Benedetto A, Rafaels NM, McGirt LY et al (2011) Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 127:773–786.e7. https://doi.org/10.1016/j.jaci.2010.10.018 DOI
Ensign LM, Hoen TE, Maisel K, Cone RA, Hanes JS (2013) Enhanced vaginal drug delivery through the use of hypotonic formulations that induce fluid uptake. Biomaterials. 34:6922–6929. https://doi.org/10.1016/j.biomaterials.2013.05.039 DOI
Fukuoka A, Yoshimoto T (2018) Barrier dysfunction in the nasal allergy. Allergol Int 67:18–23. https://doi.org/10.1016/j.alit.2017.10.006 DOI
Fukuoka A, Matsushita K, Morikawa T, Takano H, Yoshimoto T (2016) Diesel exhaust particles exacerbate allergic rhinitis in mice by disrupting the nasal epithelial barrier. Clin Exp Allergy 46:142–152. https://doi.org/10.1111/cea.12597 DOI
Garcia GJ, Schroeter JD, Kimbell JS (2015) Olfactory deposition of inhaled nanoparticles in humans. Inhal Toxicol 27:394–403. https://doi.org/10.3109/08958378.2015.1066904 DOI
Genc S, Zadeoglulari Z, Fuss SH, Genc K (2012) The adverse effects of air pollution on the nervous system. J Toxicol 2012:1–23. https://doi.org/10.1155/2012/782462 DOI
Georas SN, Rezaee F (2014) Epithelial barrier function: at the front line of asthma immunology and allergic airway inflammation. J Allergy Clin Immunol 134:509–520. https://doi.org/10.1016/j.jaci.2014.05.049 DOI
Heusinkveld HJ, Wahle T, Campbell A, Westerink RHS, Tran L, Johnston H, Stone V, Cassee FR, Schins RPF (2016) Neurodegenerative and neurological disorders by small inhaled particle. NeuroToxicology. 56:94–106. https://doi.org/10.1016/j.neuro.2016.07.007 DOI
Kirschvink JL, Kobayashi-Kirschvink A, Woodford BJ (1992) Magnetite biomineralization in the human brain. PNAS. 89:7683–7687. https://doi.org/10.1073/pnas.89.16.7683 DOI
Kohgo Y, Ikuta K, Ohtake T, Torimoto Y, Kato J (2008) Body iron metabolism and pathophysiology of iron overload. Int J Hematol 88:7–15. https://doi.org/10.1007/s12185-008-0120-5 DOI
Kojima T, Go M, Takano K, Kurose M, Ohkuni T, Koizumi JI, Kamekura R, Ogasawara N, Masaki T, Fuchimoto J, Obata K, Hirakawa S, Nomura K, Keira T, Miyata R, Fujii N, Tsutsumi H, Himi T, Sawada N (2013) Regulation of tight junctions in upper airway epithelium. Biomed Res Int 2013:1–11. https://doi.org/10.1155/2013/947072 DOI
Kukutschová J, Roubíček V, Mašláň M, Jančík D, Slovák V, Malachová K, Pavlíčková Z, Filip P (2010) Wear performance and wear debris of semimetallic automotive brake materials. Wear. 268:86–93. https://doi.org/10.1016/j.wear.2009.06.039 DOI
Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang YY, Cone R, Hanes J (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A 104:1482–1487. https://doi.org/10.1073/pnas.0608611104 DOI
Lai SK, Wang YY, Hanes J (2009) Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. https://doi.org/10.1016/j.addr.2008.11.002
Le S, Josse J, Husson F. (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw. https://doi.org/10.18637/jss.v025.i01
Lehmann AD, Blank F, Baum O, Gehr P, Rothen-Rutishauser BM (2009) Diesel exhaust particles modulate the tight junction protein occludin in lung cells in vitro. Part Fibre Toxicol 6:26. https://doi.org/10.1186/1743-8977-6-26 DOI
Liati A, Pandurangi SS, Boulouchos K, Schreiber D, Arroyo Rojas Dasilva Y (2014) Metal nanoparticles in diesel exhaust derived by in-cylinder melting of detached engine fragments. Atmos Environ 101:34–40. https://doi.org/10.1016/j.atmosenv.2014.11.014 DOI
López-Heras I, Madrid Y, Cámara C (2014) Prospects and difficulties in TiO DOI
Lucchini RG, Dorman DC, Elder A, Veronesi B (2012) Neurological impacts from inhalation of pollutants and the nose–brain connection. Neurotoxicology. 33:838–841. https://doi.org/10.1016/j.neuro.2011.12.001 DOI
Maher BA, Ahmed IAM, Karloukovski V, MacLaren DA, Foulds PG, Allsop D, Mann DMA, Torres-Jardón R, Calderon-Garciduenas L (2016) Magnetite pollution nanoparticles in the human brain. PNAS. 113:10797–10801. https://doi.org/10.1073/pnas.1605941113 DOI
Meyer D, Zeiles A, Hornik K (2017) vcd: Visualizing Categorical Data. R package version 1:4–4
Mitchell R, Maher BA (2009) Evaluation and application of biomagnetic monitoring of traffic-derived particulate pollution. Atmos Environ 43:2095–2103. https://doi.org/10.1016/j.atmosenv.2009.01.042 DOI
Oberdöerster G, Sharp Z, Atudorei V et al (2002) Extra-pulmonary translocation of ultrafine carbon particles following whole body inhalation exposure of rats. J Toxicol Environ Health A 65:1531–1543. https://doi.org/10.1080/00984100290071658 DOI
Oberdöerster G, Sharp Z, Atudorei V et al (2004) Translocation of inhaled ultrafine particles to the brain. Inhal Toxicol 16:437–445. https://doi.org/10.1080/08958370490439597 DOI
Peters A, Veronesi B, Calderon-Garciduenas L et al (2006) Translocation and potential neurological effects of fine and ultrafine particles a critical update. Particle Fibre Toxicol 3:13. https://doi.org/10.1186/1743-8977-3-13 DOI
R Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ . Accessed 9 Nov 2019
Round AN, Rigby NM, Garcia de la Torre A, Macierzanka A, Mills ENC, Mackie AR (2012) Lamellar structures of MUC2-rich mucin: a potential role in governing the barrier and lubricating functions of intestinal mucus. Biomacromolecules. 13:3253–3261. https://doi.org/10.1021/bm301024x DOI
Runswick S, Mitchell T, Davies P et al (2007) Pollen proteolytic enzymes degrade tight junctions. Respirology. 12:834–842. https://doi.org/10.1111/j.1440-1843.2007.01175.x DOI
Schamberger AC, Mise N, Jia J, Genoyer E, Yildirim AÖ, Meiners S, Eickelberg O (2014) Cigarette smoke-induced disruption of bronchial epithelial tight junctions is prevented by transforming growth factor-beta. Am J Respir Cell Mol Biol 50:1040–1052. https://doi.org/10.1165/rcmb.2013-0090OC DOI
Schultheiss-Grassi PP, Wessiken R, Dobson J (1999) TEM investigations of biogenic magnetite extracted from the human hippocampus. Biochim Biophys Acta 1426:212–216. https://doi.org/10.1016/S0304-4165(98)00160-3 DOI
Souza VGL, Fernando AL (2016) Nanoparticles in food packaging: biodegradability and potential migration to food-a review. Food Packag Shelf Life 8:63–70. https://doi.org/10.1016/j.fpsl.2016.04.001 DOI
Soyka MB, Wawrzyniak P, Eiwegger T, Holzmann D, Treis A, Wanke K, Kast JI, Akdis CA (2012) Defective epithelial barrier in chronic rhinosinusitis: the regulation of tight junctions by IFN-gamma and IL-4. J Allergy Clin Immunol 130:1087–1096.e10. https://doi.org/10.1016/j.jaci.2012.05.052 DOI
Steelant B, Farre R, Wawrzyniak P et al (2016) Impaired barrier function in patients with house dust mite-induced allergic rhinitis is accompanied by decreased occludin and zonula occludens-1 expression. J Allergy Clin Immunol 137:1043–1053.e5. https://doi.org/10.1016/j.jaci.2015.10.050 DOI
Tang BC, Dawson M, Lai SK, Wang YY, Suk JS, Yang M, Zeitlin P, Boyle MP, Fu J, Hanes J (2009) Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier. Proc Natl Acad Sci U S A 106:19268–19273. https://doi.org/10.1073/pnas.0905998106 DOI
Velzeboer I, Hendriks A, Radas A et al (2008) Aquatic ecotoxicity tests of some nanomaterials. Environ Toxicol Chem 27:1942. https://doi.org/10.1897/07-509.1 DOI
Wan H, Winton HL, Soeller C, Tovey ER, Gruenert DC, Thompson PJ, Stewart GA, Taylor GW, Garrod DR, Cannell MB, Robinson C (1999) Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J Clin Invest 104:123–133. https://doi.org/10.1172/JCI5844 DOI
Wang YY, Lai SK, Ensign LM, Zhong W, Cone R, Hanes J (2013) The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH. Biomacromolecules. 14:4429–4435. https://doi.org/10.1021/bm401356q DOI
Washington N, Washington C, Wilson C (2001) Physiological pharmaceutics: barriers to drug absorption, 2nd edn. Taylor & Francis, London
Wright JA, Brown DR (2008) Alpha-synuclein and its role in metal binding: relevance to Parkinson’s disease. J Neurosci Res 86:496–503. https://doi.org/10.1002/jnr.21461 DOI
Xiao C, Puddicombe SM, Field S, Haywood J, Broughton-Head V, Puxeddu I, Haitchi HM, Vernon-Wilson E, Sammut D, Bedke N, Cremin C, Sones J, Djukanović R, Howarth PH, Collins JE, Holgate ST, Monk P, Davies DE (2011) Defective epithelial barrier function in asthma. J Allergy Clin Immunol 128:549–556.e12. https://doi.org/10.1016/j.jaci.2011.05.038 DOI
Yamanaka YJ, Leong KW (2008) Engineering strategies to enhance nanoparticle-mediated oral delivery. J Biomech 19:1549–1570. https://doi.org/10.1163/156856208786440479 DOI
Solid Anorganic Particles and Chronic Rhinosinusitis: A Histopathology Study